Support Ollama models (#1596)
This commit is contained in:
@@ -11,7 +11,8 @@ class BaseLlmConfig(ABC):
|
||||
model: Optional[str] = None,
|
||||
temperature: float = 0,
|
||||
max_tokens: int = 3000,
|
||||
top_p: float = 1
|
||||
top_p: float = 1,
|
||||
base_url: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the LLM.
|
||||
@@ -26,9 +27,12 @@ class BaseLlmConfig(ABC):
|
||||
:param top_p: Controls the diversity of words. Higher values (closer to 1) make word selection more diverse,
|
||||
defaults to 1
|
||||
:type top_p: float, optional
|
||||
:param base_url: The base URL of the LLM, defaults to None
|
||||
:type base_url: Optional[str], optional
|
||||
"""
|
||||
|
||||
self.model = model
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
self.top_p = top_p
|
||||
self.top_p = top_p
|
||||
self.base_url = base_url
|
||||
@@ -1,29 +1,90 @@
|
||||
import ollama
|
||||
from mem0.llms.base import LLMBase
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
try:
|
||||
from ollama import Client
|
||||
except ImportError:
|
||||
raise ImportError("Ollama requires extra dependencies. Install with `pip install ollama`") from None
|
||||
|
||||
from mem0.llms.base import LLMBase
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
|
||||
class OllamaLLM(LLMBase):
|
||||
def __init__(self, model="llama3"):
|
||||
self.model = model
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if not self.config.model:
|
||||
self.config.model="llama3.1:70b"
|
||||
self.client = Client(host=self.config.base_url)
|
||||
self._ensure_model_exists()
|
||||
|
||||
def _ensure_model_exists(self):
|
||||
"""
|
||||
Ensure the specified model exists locally. If not, pull it from Ollama.
|
||||
"""
|
||||
local_models = self.client.list()["models"]
|
||||
if not any(model.get("name") == self.config.model for model in local_models):
|
||||
self.client.pull(self.config.model)
|
||||
|
||||
def _parse_response(self, response, tools):
|
||||
"""
|
||||
model_list = [m["name"] for m in ollama.list()["models"]]
|
||||
if not any(m.startswith(self.model) for m in model_list):
|
||||
ollama.pull(self.model)
|
||||
Process the response based on whether tools are used or not.
|
||||
|
||||
def generate_response(self, messages):
|
||||
Args:
|
||||
response: The raw response from API.
|
||||
tools: The list of tools provided in the request.
|
||||
|
||||
Returns:
|
||||
str or dict: The processed response.
|
||||
"""
|
||||
Generate a response based on the given messages using Ollama.
|
||||
if tools:
|
||||
processed_response = {
|
||||
"content": response['message']['content'],
|
||||
"tool_calls": []
|
||||
}
|
||||
|
||||
if response['message'].get('tool_calls'):
|
||||
for tool_call in response['message']['tool_calls']:
|
||||
processed_response["tool_calls"].append({
|
||||
"name": tool_call["function"]["name"],
|
||||
"arguments": tool_call["function"]["arguments"]
|
||||
})
|
||||
|
||||
return processed_response
|
||||
else:
|
||||
return response['message']['content']
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
response_format=None,
|
||||
tools: Optional[List[Dict]] = None,
|
||||
tool_choice: str = "auto",
|
||||
):
|
||||
"""
|
||||
Generate a response based on the given messages using OpenAI.
|
||||
|
||||
Args:
|
||||
messages (list): List of message dicts containing 'role' and 'content'.
|
||||
response_format (str or object, optional): Format of the response. Defaults to "text".
|
||||
tools (list, optional): List of tools that the model can call. Defaults to None.
|
||||
tool_choice (str, optional): Tool choice method. Defaults to "auto".
|
||||
|
||||
Returns:
|
||||
str: The generated response.
|
||||
"""
|
||||
response = ollama.chat(model=self.model, messages=messages)
|
||||
return response["message"]["content"]
|
||||
params = {
|
||||
"model": self.config.model,
|
||||
"messages": messages,
|
||||
"options": {
|
||||
"temperature": self.config.temperature,
|
||||
"num_predict": self.config.max_tokens,
|
||||
"top_p": self.config.top_p
|
||||
}
|
||||
}
|
||||
if response_format:
|
||||
params["format"] = response_format
|
||||
if tools:
|
||||
params["tools"] = tools
|
||||
|
||||
response = self.client.chat(**params)
|
||||
return self._parse_response(response, tools)
|
||||
@@ -17,6 +17,7 @@ class LlmFactory:
|
||||
"together": "mem0.llms.together.TogetherLLM",
|
||||
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
|
||||
"litellm": "mem0.llms.litellm.LiteLLM",
|
||||
"ollama": "mem0.llms.ollama.OllamaLLM",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
Reference in New Issue
Block a user