Support model config in LLMs (#1495)
This commit is contained in:
@@ -5,12 +5,16 @@ from typing import Dict, List, Optional, Any
|
||||
import boto3
|
||||
|
||||
from mem0.llms.base import LLMBase
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
|
||||
class AWSBedrockLLM(LLMBase):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
class AWSBedrockLLM(LLMBase):
|
||||
def __init__(self, model="cohere.command-r-v1:0"):
|
||||
if not self.config.model:
|
||||
self.config.model="anthropic.claude-3-5-sonnet-20240620-v1:0"
|
||||
self.client = boto3.client("bedrock-runtime", region_name=os.environ.get("AWS_REGION"), aws_access_key_id=os.environ.get("AWS_ACCESS_KEY"), aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"))
|
||||
self.model = model
|
||||
self.model_kwargs = {"temperature": self.config.temperature, "max_tokens_to_sample": self.config.max_tokens, "top_p": self.config.top_p}
|
||||
|
||||
def _format_messages(self, messages: List[Dict[str, str]]) -> str:
|
||||
"""
|
||||
@@ -171,19 +175,20 @@ class AWSBedrockLLM(LLMBase):
|
||||
if tools:
|
||||
# Use converse method when tools are provided
|
||||
messages = [{"role": "user", "content": [{"text": message["content"]} for message in messages]}]
|
||||
inference_config = {"temperature": self.model_kwargs["temperature"], "maxTokens": self.model_kwargs["max_tokens_to_sample"], "topP": self.model_kwargs["top_p"]}
|
||||
tools_config = {"tools": self._convert_tool_format(tools)}
|
||||
|
||||
response = self.client.converse(
|
||||
modelId=self.model,
|
||||
modelId=self.config.model,
|
||||
messages=messages,
|
||||
inferenceConfig=inference_config,
|
||||
toolConfig=tools_config
|
||||
)
|
||||
print("Tools response: ", response)
|
||||
else:
|
||||
# Use invoke_model method when no tools are provided
|
||||
prompt = self._format_messages(messages)
|
||||
provider = self.model.split(".")[0]
|
||||
input_body = self._prepare_input(provider, self.model, prompt)
|
||||
input_body = self._prepare_input(provider, self.config.model, prompt, **self.model_kwargs)
|
||||
body = json.dumps(input_body)
|
||||
|
||||
response = self.client.invoke_model(
|
||||
|
||||
Reference in New Issue
Block a user