Support model config in LLMs (#1495)

This commit is contained in:
Dev Khant
2024-07-18 21:51:40 +05:30
committed by GitHub
parent c411dc294e
commit 40c9abe484
15 changed files with 172 additions and 41 deletions

View File

34
mem0/configs/llms/base.py Normal file
View File

@@ -0,0 +1,34 @@
from abc import ABC
from typing import Optional
class BaseLlmConfig(ABC):
"""
Config for LLMs.
"""
def __init__(
self,
model: Optional[str] = None,
temperature: float = 0,
max_tokens: int = 3000,
top_p: float = 1
):
"""
Initializes a configuration class instance for the LLM.
:param model: Controls the OpenAI model used, defaults to None
:type model: Optional[str], optional
:param temperature: Controls the randomness of the model's output.
Higher values (closer to 1) make output more random, lower values make it more deterministic, defaults to 0
:type temperature: float, optional
:param max_tokens: Controls how many tokens are generated, defaults to 3000
:type max_tokens: int, optional
:param top_p: Controls the diversity of words. Higher values (closer to 1) make word selection more diverse,
defaults to 1
:type top_p: float, optional
"""
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
self.top_p = top_p

View File

@@ -5,12 +5,16 @@ from typing import Dict, List, Optional, Any
import boto3
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class AWSBedrockLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
class AWSBedrockLLM(LLMBase):
def __init__(self, model="cohere.command-r-v1:0"):
if not self.config.model:
self.config.model="anthropic.claude-3-5-sonnet-20240620-v1:0"
self.client = boto3.client("bedrock-runtime", region_name=os.environ.get("AWS_REGION"), aws_access_key_id=os.environ.get("AWS_ACCESS_KEY"), aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"))
self.model = model
self.model_kwargs = {"temperature": self.config.temperature, "max_tokens_to_sample": self.config.max_tokens, "top_p": self.config.top_p}
def _format_messages(self, messages: List[Dict[str, str]]) -> str:
"""
@@ -171,19 +175,20 @@ class AWSBedrockLLM(LLMBase):
if tools:
# Use converse method when tools are provided
messages = [{"role": "user", "content": [{"text": message["content"]} for message in messages]}]
inference_config = {"temperature": self.model_kwargs["temperature"], "maxTokens": self.model_kwargs["max_tokens_to_sample"], "topP": self.model_kwargs["top_p"]}
tools_config = {"tools": self._convert_tool_format(tools)}
response = self.client.converse(
modelId=self.model,
modelId=self.config.model,
messages=messages,
inferenceConfig=inference_config,
toolConfig=tools_config
)
print("Tools response: ", response)
else:
# Use invoke_model method when no tools are provided
prompt = self._format_messages(messages)
provider = self.model.split(".")[0]
input_body = self._prepare_input(provider, self.model, prompt)
input_body = self._prepare_input(provider, self.config.model, prompt, **self.model_kwargs)
body = json.dumps(input_body)
response = self.client.invoke_model(

View File

@@ -1,7 +1,21 @@
from typing import Optional
from abc import ABC, abstractmethod
from mem0.configs.llms.base import BaseLlmConfig
class LLMBase(ABC):
def __init__(self, config: Optional[BaseLlmConfig] = None):
"""Initialize a base LLM class
:param config: LLM configuration option class, defaults to None
:type config: Optional[BaseLlmConfig], optional
"""
if config is None:
self.config = BaseLlmConfig()
else:
self.config = config
@abstractmethod
def generate_response(self, messages):
"""

View File

@@ -8,7 +8,7 @@ class LlmConfig(BaseModel):
description="Provider of the LLM (e.g., 'ollama', 'openai')", default="openai"
)
config: Optional[dict] = Field(
description="Configuration for the specific LLM", default=None
description="Configuration for the specific LLM", default={}
)
@field_validator("config")

View File

@@ -4,12 +4,16 @@ from typing import Dict, List, Optional
from groq import Groq
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class GroqLLM(LLMBase):
def __init__(self, model="llama3-70b-8192"):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model="llama3-70b-8192"
self.client = Groq()
self.model = model
def _parse_response(self, response, tools):
"""
@@ -58,7 +62,13 @@ class GroqLLM(LLMBase):
Returns:
str: The generated response.
"""
params = {"model": self.model, "messages": messages}
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
if tools:

View File

@@ -4,11 +4,15 @@ from typing import Dict, List, Optional
import litellm
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class LiteLLM(LLMBase):
def __init__(self, model="gpt-4o"):
self.model = model
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model="gpt-4o"
def _parse_response(self, response, tools):
"""
@@ -57,10 +61,16 @@ class LiteLLM(LLMBase):
Returns:
str: The generated response.
"""
if not litellm.supports_function_calling(self.model):
raise ValueError(f"Model '{self.model}' in litellm does not support function calling.")
if not litellm.supports_function_calling(self.config.model):
raise ValueError(f"Model '{self.config.model}' in litellm does not support function calling.")
params = {"model": self.model, "messages": messages}
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
if tools:

View File

@@ -4,12 +4,15 @@ from typing import Dict, List, Optional
from openai import OpenAI
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class OpenAILLM(LLMBase):
def __init__(self, model="gpt-4o"):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model="gpt-4o"
self.client = OpenAI()
self.model = model
def _parse_response(self, response, tools):
"""
@@ -58,7 +61,13 @@ class OpenAILLM(LLMBase):
Returns:
str: The generated response.
"""
params = {"model": self.model, "messages": messages}
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
if tools:

View File

@@ -4,12 +4,15 @@ from typing import Dict, List, Optional
from together import Together
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class TogetherLLM(LLMBase):
def __init__(self, model="mistralai/Mixtral-8x7B-Instruct-v0.1"):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model="mistralai/Mixtral-8x7B-Instruct-v0.1"
self.client = Together()
self.model = model
def _parse_response(self, response, tools):
"""
@@ -58,7 +61,13 @@ class TogetherLLM(LLMBase):
Returns:
str: The generated response.
"""
params = {"model": self.model, "messages": messages}
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
if tools:

View File

@@ -82,7 +82,7 @@ class Memory(MemoryBase):
f"Unsupported vector store type: {self.config.vector_store_type}"
)
self.llm = LlmFactory.create(self.config.llm.provider)
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
self.db = SQLiteManager(self.config.history_db_path)
self.collection_name = self.config.collection_name
self.vector_store.create_col(

View File

@@ -1,5 +1,7 @@
import importlib
from mem0.configs.llms.base import BaseLlmConfig
def load_class(class_type):
module_path, class_name = class_type.rsplit(".", 1)
@@ -18,11 +20,12 @@ class LlmFactory:
}
@classmethod
def create(cls, provider_name):
def create(cls, provider_name, config):
class_type = cls.provider_to_class.get(provider_name)
if class_type:
llm_instance = load_class(class_type)()
return llm_instance
llm_instance = load_class(class_type)
base_config = BaseLlmConfig(**config)
return llm_instance(base_config)
else:
raise ValueError(f"Unsupported Llm provider: {provider_name}")