Livekit Docs Update (#2933)
This commit is contained in:
@@ -12,8 +12,7 @@ Before you begin, make sure you have:
|
||||
|
||||
1. Installed Livekit Agents SDK with voice dependencies of silero and deepgram:
|
||||
```bash
|
||||
pip install livekit \
|
||||
livekit-agents \
|
||||
pip install livekit-agents[voice] \
|
||||
livekit-plugins-silero \
|
||||
livekit-plugins-deepgram \
|
||||
livekit-plugins-openai
|
||||
@@ -38,7 +37,7 @@ OPENAI_API_KEY=your_openai_api_key
|
||||
|
||||
## Code Breakdown
|
||||
|
||||
Let's break down the key components of this implementation:
|
||||
Let's break down the key components of this implementation using LiveKit Agents:
|
||||
|
||||
### 1. Setting Up Dependencies and Environment
|
||||
|
||||
@@ -51,17 +50,19 @@ from typing import List, Dict, Any, Annotated
|
||||
import aiohttp
|
||||
from dotenv import load_dotenv
|
||||
from livekit.agents import (
|
||||
Agent,
|
||||
AgentSession,
|
||||
AutoSubscribe,
|
||||
JobContext,
|
||||
JobProcess,
|
||||
WorkerOptions,
|
||||
cli,
|
||||
llm,
|
||||
metrics,
|
||||
function_tool,
|
||||
RunContext,
|
||||
cli,
|
||||
WorkerOptions,
|
||||
ModelSettings,
|
||||
)
|
||||
from livekit import rtc, api
|
||||
from livekit.agents.pipeline import VoicePipelineAgent
|
||||
from livekit.plugins import deepgram, openai, silero
|
||||
from livekit.plugins.turn_detector.multilingual import MultilingualModel
|
||||
from mem0 import AsyncMemoryClient
|
||||
|
||||
# Load environment variables
|
||||
@@ -88,36 +89,45 @@ This section handles:
|
||||
### 2. Memory Enrichment Function
|
||||
|
||||
```python
|
||||
async def _enrich_with_memory(agent: VoicePipelineAgent, chat_ctx: llm.ChatContext):
|
||||
"""Add memories and Augment chat context with relevant memories"""
|
||||
async def _enrich_with_memory(chat_ctx: llm.ChatContext):
|
||||
"""Add memories and augment chat context with relevant memories"""
|
||||
if not chat_ctx.messages:
|
||||
return
|
||||
|
||||
# Store user message in Mem0
|
||||
|
||||
# Get the latest user message
|
||||
user_msg = chat_ctx.messages[-1]
|
||||
if user_msg.role != "user":
|
||||
return
|
||||
|
||||
user_content = user_msg.text_content()
|
||||
if not user_content:
|
||||
return
|
||||
|
||||
# Store user message in Mem0
|
||||
await mem0.add(
|
||||
[{"role": "user", "content": user_msg.content}],
|
||||
[{"role": "user", "content": user_content}],
|
||||
user_id=USER_ID
|
||||
)
|
||||
|
||||
|
||||
# Search for relevant memories
|
||||
results = await mem0.search(
|
||||
user_msg.content,
|
||||
user_content,
|
||||
user_id=USER_ID,
|
||||
)
|
||||
|
||||
|
||||
# Augment context with retrieved memories
|
||||
if results:
|
||||
memories = ' '.join([result["memory"] for result in results])
|
||||
logger.info(f"Enriching with memory: {memories}")
|
||||
|
||||
rag_msg = llm.ChatMessage.create(
|
||||
|
||||
# Add memory context as a assistant message
|
||||
memory_msg = llm.ChatMessage.create(
|
||||
text=f"Relevant Memory: {memories}\n",
|
||||
role="assistant",
|
||||
)
|
||||
|
||||
|
||||
# Modify chat context with retrieved memories
|
||||
chat_ctx.messages[-1] = rag_msg
|
||||
chat_ctx.messages[-1] = memory_msg
|
||||
chat_ctx.messages.append(user_msg)
|
||||
```
|
||||
|
||||
@@ -130,62 +140,45 @@ This function:
|
||||
### 3. Prewarm and Entrypoint Functions
|
||||
|
||||
```python
|
||||
def prewarm_process(proc: JobProcess):
|
||||
# Preload silero VAD in memory to speed up session start
|
||||
def prewarm_process(proc):
|
||||
"""Preload components to speed up session start"""
|
||||
proc.userdata["vad"] = silero.VAD.load()
|
||||
|
||||
async def entrypoint(ctx: JobContext):
|
||||
"""Main entrypoint for the memory-enabled voice agent"""
|
||||
|
||||
# Connect to LiveKit room
|
||||
await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)
|
||||
|
||||
# Wait for participant
|
||||
participant = await ctx.wait_for_participant()
|
||||
|
||||
# Initialize Mem0 client
|
||||
mem0 = AsyncMemoryClient()
|
||||
|
||||
# Define initial system context
|
||||
initial_ctx = llm.ChatContext().append(
|
||||
role="system",
|
||||
text=(
|
||||
"""
|
||||
You are a helpful voice assistant.
|
||||
You are a travel guide named George and will help the user to plan a travel trip of their dreams.
|
||||
You should help the user plan for various adventures like work retreats, family vacations or solo backpacking trips.
|
||||
You should be careful to not suggest anything that would be dangerous, illegal or inappropriate.
|
||||
You can remember past interactions and use them to inform your answers.
|
||||
Use semantic memory retrieval to provide contextually relevant responses.
|
||||
"""
|
||||
),
|
||||
)
|
||||
|
||||
# Create VoicePipelineAgent with memory capabilities
|
||||
agent = VoicePipelineAgent(
|
||||
chat_ctx=initial_ctx,
|
||||
vad=silero.VAD.load(),
|
||||
# Create agent session with modern 1.0 architecture
|
||||
session = AgentSession(
|
||||
stt=deepgram.STT(),
|
||||
llm=openai.LLM(model="gpt-4o-mini"),
|
||||
tts=openai.TTS(),
|
||||
before_llm_cb=_enrich_with_memory,
|
||||
vad=silero.VAD.load(),
|
||||
turn_detection=MultilingualModel(),
|
||||
)
|
||||
|
||||
# Start agent and initial greeting
|
||||
agent.start(ctx.room, participant)
|
||||
await agent.say(
|
||||
"Hello! I'm George. Can I help you plan an upcoming trip? ",
|
||||
allow_interruptions=True
|
||||
# Create memory-enabled agent
|
||||
agent = MemoryEnabledAgent()
|
||||
|
||||
# Start the session
|
||||
await session.start(
|
||||
room=ctx.room,
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Run the application
|
||||
if __name__ == "__main__":
|
||||
cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint, prewarm_fnc=prewarm_process))
|
||||
# Initial greeting
|
||||
await session.generate_reply(
|
||||
instructions="Greet the user warmly as George the travel guide and ask how you can help them plan their next adventure."
|
||||
)
|
||||
```
|
||||
|
||||
The entrypoint function:
|
||||
- Connects to LiveKit room
|
||||
- Initializes Mem0 memory client
|
||||
- Sets up initial system context
|
||||
- Creates a VoicePipelineAgent with memory enrichment
|
||||
- Create agent session using `AgentSession` orchestrator with memory enrichment
|
||||
- Uses modern turn detection with `MultilingualModel()`
|
||||
- Starts the agent with an initial greeting
|
||||
|
||||
## Create a Memory-Enabled Voice Agent
|
||||
@@ -196,22 +189,22 @@ Now that we've explained each component, here's the complete implementation that
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
from typing import List, Dict, Any, Annotated
|
||||
from typing import AsyncIterable, Any
|
||||
|
||||
import aiohttp
|
||||
from dotenv import load_dotenv
|
||||
from livekit.agents import (
|
||||
AutoSubscribe,
|
||||
Agent,
|
||||
AgentSession,
|
||||
JobContext,
|
||||
JobProcess,
|
||||
WorkerOptions,
|
||||
cli,
|
||||
llm,
|
||||
metrics,
|
||||
function_tool,
|
||||
RunContext,
|
||||
cli,
|
||||
WorkerOptions,
|
||||
ModelSettings,
|
||||
)
|
||||
from livekit import rtc, api
|
||||
from livekit.agents.pipeline import VoicePipelineAgent
|
||||
from livekit.plugins import deepgram, openai, silero
|
||||
from livekit.plugins.turn_detector.multilingual import MultilingualModel
|
||||
from mem0 import AsyncMemoryClient
|
||||
|
||||
# Load environment variables
|
||||
@@ -227,92 +220,129 @@ USER_ID = "voice_user"
|
||||
# Initialize Mem0 memory client
|
||||
mem0 = AsyncMemoryClient()
|
||||
|
||||
def prewarm_process(proc: JobProcess):
|
||||
# Preload silero VAD in memory to speed up session start
|
||||
proc.userdata["vad"] = silero.VAD.load()
|
||||
class MemoryEnabledAgent(Agent):
|
||||
"""Travel guide agent with Mem0 memory integration"""
|
||||
|
||||
async def entrypoint(ctx: JobContext):
|
||||
# Connect to LiveKit room
|
||||
await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)
|
||||
|
||||
# Wait for participant
|
||||
participant = await ctx.wait_for_participant()
|
||||
|
||||
async def _enrich_with_memory(agent: VoicePipelineAgent, chat_ctx: llm.ChatContext):
|
||||
"""Add memories and Augment chat context with relevant memories"""
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
instructions="""
|
||||
You are a helpful voice assistant.
|
||||
You are a travel guide named George and will help the user to plan a travel trip of their dreams.
|
||||
You should help the user plan for various adventures like work retreats, family vacations or solo backpacking trips.
|
||||
You should be careful to not suggest anything that would be dangerous, illegal or inappropriate.
|
||||
You can remember past interactions and use them to inform your answers.
|
||||
Use semantic memory retrieval to provide contextually relevant responses.
|
||||
"""
|
||||
)
|
||||
|
||||
async def llm_node(
|
||||
self,
|
||||
chat_ctx: llm.ChatContext,
|
||||
tools: list[llm.FunctionTool],
|
||||
model_settings: ModelSettings,
|
||||
) -> AsyncIterable[llm.ChatChunk]:
|
||||
"""Override LLM node to add memory enrichment before inference"""
|
||||
|
||||
# Enrich context with memory before LLM inference
|
||||
await self._enrich_with_memory(chat_ctx)
|
||||
|
||||
# Call default LLM node with enriched context
|
||||
async for chunk in Agent.default.llm_node(self, chat_ctx, tools, model_settings):
|
||||
yield chunk
|
||||
|
||||
async def _enrich_with_memory(self, chat_ctx: llm.ChatContext):
|
||||
"""Add memories and augment chat context with relevant memories"""
|
||||
if not chat_ctx.messages:
|
||||
return
|
||||
|
||||
# Store user message in Mem0
|
||||
|
||||
# Get the latest user message
|
||||
user_msg = chat_ctx.messages[-1]
|
||||
if user_msg.role != "user":
|
||||
return
|
||||
|
||||
user_content = user_msg.text_content()
|
||||
if not user_content:
|
||||
return
|
||||
|
||||
# Store user message in Mem0
|
||||
await mem0.add(
|
||||
[{"role": "user", "content": user_msg.content}],
|
||||
[{"role": "user", "content": user_content}],
|
||||
user_id=USER_ID
|
||||
)
|
||||
|
||||
|
||||
# Search for relevant memories
|
||||
results = await mem0.search(
|
||||
user_msg.content,
|
||||
user_content,
|
||||
user_id=USER_ID,
|
||||
)
|
||||
|
||||
|
||||
# Augment context with retrieved memories
|
||||
if results:
|
||||
memories = ' '.join([result["memory"] for result in results])
|
||||
logger.info(f"Enriching with memory: {memories}")
|
||||
|
||||
rag_msg = llm.ChatMessage.create(
|
||||
|
||||
# Add memory context as a assistant message
|
||||
memory_msg = llm.ChatMessage.create(
|
||||
text=f"Relevant Memory: {memories}\n",
|
||||
role="assistant",
|
||||
)
|
||||
|
||||
|
||||
# Modify chat context with retrieved memories
|
||||
chat_ctx.messages[-1] = rag_msg
|
||||
chat_ctx.messages[-1] = memory_msg
|
||||
chat_ctx.messages.append(user_msg)
|
||||
|
||||
# Define initial system context
|
||||
initial_ctx = llm.ChatContext().append(
|
||||
role="system",
|
||||
text=(
|
||||
"""
|
||||
You are a helpful voice assistant.
|
||||
You are a travel guide named George and will help the user to plan a travel trip of their dreams.
|
||||
You should help the user plan for various adventures like work retreats, family vacations or solo backpacking trips.
|
||||
You should be careful to not suggest anything that would be dangerous, illegal or inappropriate.
|
||||
You can remember past interactions and use them to inform your answers.
|
||||
Use semantic memory retrieval to provide contextually relevant responses.
|
||||
"""
|
||||
),
|
||||
)
|
||||
def prewarm_process(proc):
|
||||
"""Preload components to speed up session start"""
|
||||
proc.userdata["vad"] = silero.VAD.load()
|
||||
|
||||
# Create VoicePipelineAgent with memory capabilities
|
||||
agent = VoicePipelineAgent(
|
||||
chat_ctx=initial_ctx,
|
||||
vad=silero.VAD.load(),
|
||||
async def entrypoint(ctx: JobContext):
|
||||
"""Main entrypoint for the memory-enabled voice agent"""
|
||||
|
||||
# Connect to LiveKit room
|
||||
await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)
|
||||
|
||||
# Initialize Mem0 client
|
||||
mem0 = AsyncMemoryClient()
|
||||
|
||||
# Create agent session with modern 1.0 architecture
|
||||
session = AgentSession(
|
||||
stt=deepgram.STT(),
|
||||
llm=openai.LLM(model="gpt-4o-mini"),
|
||||
tts=openai.TTS(),
|
||||
before_llm_cb=_enrich_with_memory,
|
||||
vad=silero.VAD.load(),
|
||||
turn_detection=MultilingualModel(),
|
||||
)
|
||||
|
||||
# Start agent and initial greeting
|
||||
agent.start(ctx.room, participant)
|
||||
await agent.say(
|
||||
"Hello! I'm George. Can I help you plan an upcoming trip? ",
|
||||
# Create memory-enabled agent
|
||||
agent = MemoryEnabledAgent()
|
||||
|
||||
# Start the session
|
||||
await session.start(
|
||||
room=ctx.room,
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Initial greeting
|
||||
await session.generate_reply(
|
||||
instructions="Greet the user warmly as George the travel guide and ask how you can help them plan their next adventure.",
|
||||
allow_interruptions=True
|
||||
)
|
||||
|
||||
# Run the application
|
||||
if __name__ == "__main__":
|
||||
cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint, prewarm_fnc=prewarm_process))
|
||||
cli.run_app(WorkerOptions(
|
||||
entrypoint_fnc=entrypoint,
|
||||
prewarm_fnc=prewarm_process
|
||||
))
|
||||
```
|
||||
|
||||
## Key Features of This Implementation
|
||||
|
||||
1. **Semantic Memory Retrieval**: Uses Mem0 to store and retrieve contextually relevant memories
|
||||
2. **Voice Interaction**: Leverages LiveKit for voice communication
|
||||
2. **Voice Interaction**: Leverages LiveKit for voice communication with proper turn detection
|
||||
3. **Intelligent Context Management**: Augments conversations with past interactions
|
||||
4. **Travel Planning Specialization**: Focused on creating a helpful travel guide assistant
|
||||
5. **Function Tools**: Modern tool definition for enhanced capabilities
|
||||
|
||||
## Running the Example
|
||||
|
||||
@@ -325,13 +355,13 @@ To run this example:
|
||||
```sh
|
||||
python mem0-livekit-voice-agent.py start
|
||||
```
|
||||
5. After the script starts, you can interact with the voice agent using [Livekit's Agent Platform](https://agents-playground.livekit.io/) and Connect to the agent inorder to start conversations.
|
||||
5. After the script starts, you can interact with the voice agent using [Livekit's Agent Platform](https://agents-playground.livekit.io/) and connect to the agent inorder to start conversations.
|
||||
|
||||
## Best Practices for Voice Agents with Memory
|
||||
|
||||
1. **Context Preservation**: Store enough context with each memory for effective retrieval
|
||||
2. **Privacy Considerations**: Implement secure memory management
|
||||
3. **Relevant Memory Filtering**: Use semantic search to retrieve only the most pertinent memories
|
||||
3. **Relevant Memory Filtering**: Use semantic search to retrieve only the most relevant memories
|
||||
4. **Error Handling**: Implement robust error handling for memory operations
|
||||
|
||||
## Debugging Function Tools
|
||||
|
||||
Reference in New Issue
Block a user