[Improvements] Add support for creating app from YAML string config (#980)
This commit is contained in:
@@ -1,8 +1,15 @@
|
||||
---
|
||||
title: 🔎 Examples
|
||||
description: 'Collection of Google colab notebook and Replit links for users'
|
||||
---
|
||||
|
||||
# Explore awesome apps
|
||||
|
||||
Check out the remarkable work accomplished using [Embedchain](https://app.embedchain.ai/custom-gpts/).
|
||||
|
||||
## Collection of Google colab notebook and Replit links for users
|
||||
|
||||
Get started with Embedchain by trying out the examples below. You can run the examples in your browser using Google Colab or Replit.
|
||||
|
||||
<table>
|
||||
<thead>
|
||||
<tr>
|
||||
|
||||
@@ -2,13 +2,36 @@
|
||||
title: ❓ FAQs
|
||||
description: 'Collections of all the frequently asked questions'
|
||||
---
|
||||
|
||||
#### Does Embedchain support OpenAI's Assistant APIs?
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Does Embedchain support OpenAI's Assistant APIs?">
|
||||
Yes, it does. Please refer to the [OpenAI Assistant docs page](/get-started/openai-assistant).
|
||||
</Accordion>
|
||||
<Accordion title="How to use MistralAI language model?">
|
||||
Use the model provided on huggingface: `mistralai/Mistral-7B-v0.1`
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
#### How to use `gpt-4-turbo` model released on OpenAI DevDay?
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "hf_your_token"
|
||||
|
||||
app = App.from_config("huggingface.yaml")
|
||||
```
|
||||
```yaml huggingface.yaml
|
||||
llm:
|
||||
provider: huggingface
|
||||
config:
|
||||
model: 'mistralai/Mistral-7B-v0.1'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 0.5
|
||||
stream: false
|
||||
```
|
||||
</CodeGroup>
|
||||
</Accordion>
|
||||
<Accordion title="How to use ChatGPT 4 turbo model released on OpenAI DevDay?">
|
||||
Use the model `gpt-4-turbo` provided my openai.
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
@@ -18,7 +41,7 @@ from embedchain import Pipeline as App
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load llm configuration from gpt4_turbo.yaml file
|
||||
app = App.from_config(yaml_path="gpt4_turbo.yaml")
|
||||
app = App.from_config(config_path="gpt4_turbo.yaml")
|
||||
```
|
||||
|
||||
```yaml gpt4_turbo.yaml
|
||||
@@ -31,12 +54,9 @@ llm:
|
||||
top_p: 1
|
||||
stream: false
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
#### How to use GPT-4 as the LLM model?
|
||||
|
||||
</Accordion>
|
||||
<Accordion title="How to use GPT-4 as the LLM model?">
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
@@ -46,7 +66,7 @@ from embedchain import Pipeline as App
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load llm configuration from gpt4.yaml file
|
||||
app = App.from_config(yaml_path="gpt4.yaml")
|
||||
app = App.from_config(config_path="gpt4.yaml")
|
||||
```
|
||||
|
||||
```yaml gpt4.yaml
|
||||
@@ -61,9 +81,8 @@ llm:
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
#### I don't have OpenAI credits. How can I use some open source model?
|
||||
|
||||
</Accordion>
|
||||
<Accordion title="I don't have OpenAI credits. How can I use some open source model?">
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
@@ -73,7 +92,7 @@ from embedchain import Pipeline as App
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load llm configuration from opensource.yaml file
|
||||
app = App.from_config(yaml_path="opensource.yaml")
|
||||
app = App.from_config(config_path="opensource.yaml")
|
||||
```
|
||||
|
||||
```yaml opensource.yaml
|
||||
@@ -93,8 +112,10 @@ embedder:
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
#### How to contact support?
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
#### Need more help?
|
||||
If docs aren't sufficient, please feel free to reach out to us using one of the following methods:
|
||||
|
||||
<Snippet file="get-help.mdx" />
|
||||
|
||||
@@ -105,7 +105,7 @@ app.deploy()
|
||||
# ✅ Data of type: web_page, value: https://www.forbes.com/profile/elon-musk added successfully.
|
||||
```
|
||||
|
||||
## 🚀 How it works?
|
||||
## 🛠️ How it works?
|
||||
|
||||
Embedchain abstracts out the following steps from you to easily create LLM powered apps:
|
||||
|
||||
@@ -129,3 +129,5 @@ The process of loading the dataset and querying involves multiple steps, each wi
|
||||
- How should I find similar documents for a query? Which ranking model should I use?
|
||||
|
||||
Embedchain takes care of all these nuances and provides a simple interface to create apps on any data.
|
||||
|
||||
## [🚀 Get started](https://docs.embedchain.ai/get-started/quickstart)
|
||||
|
||||
@@ -12,79 +12,73 @@ pip install embedchain
|
||||
```
|
||||
|
||||
<Tip>
|
||||
Embedchain now supports OpenAI's latest `gpt-4-turbo` model. Checkout the [docs here](/get-started/faq#how-to-use-gpt-4-turbo-model-released-on-openai-devday) on how to use it.
|
||||
Embedchain now supports OpenAI's latest `gpt-4-turbo` model. Checkout the [FAQs](/get-started/faq#how-to-use-gpt-4-turbo-model-released-on-openai-devday).
|
||||
</Tip>
|
||||
|
||||
Creating an app involves 3 steps:
|
||||
|
||||
<Steps>
|
||||
<Step title="⚙️ Import app instance">
|
||||
```python
|
||||
from embedchain import Pipeline as App
|
||||
app = App()
|
||||
```
|
||||
```python
|
||||
from embedchain import Pipeline as App
|
||||
app = App()
|
||||
```
|
||||
<Accordion title="Customize your app by a simple YAML config" icon="gear-complex">
|
||||
Embedchain provides a wide range of options to customize your app. You can customize the model, data sources, and much more.
|
||||
Explore the custom configurations [here](https://docs.embedchain.ai/advanced/configuration).
|
||||
```python
|
||||
from embedchain import Pipeline as App
|
||||
app = App(yaml_config="config.yaml")
|
||||
```
|
||||
</Accordion>
|
||||
</Step>
|
||||
<Step title="🗃️ Add data sources">
|
||||
```python
|
||||
# Add different data sources
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
# You can also add local data sources such as pdf, csv files etc.
|
||||
# app.add("/path/to/file.pdf")
|
||||
```
|
||||
```python
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
# app.add("path/to/file/elon_musk.pdf")
|
||||
```
|
||||
<Accordion title="Embedchain supports adding data from many data sources." icon="files">
|
||||
Embedchain supports adding data from many data sources including web pages, PDFs, databases, and more.
|
||||
Explore the list of supported [data sources](https://docs.embedchain.ai/data-sources/overview).
|
||||
</Accordion>
|
||||
</Step>
|
||||
<Step title="💬 Query or chat or search context on your data">
|
||||
```python
|
||||
app.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
<Step title="💬 Ask questions, chat, or search through your data with ease">
|
||||
```python
|
||||
app.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
<Accordion title="Want to chat with your app?" icon="face-thinking">
|
||||
Embedchain provides a wide range of features to interact with your app. You can chat with your app, ask questions, search through your data, and much more.
|
||||
```python
|
||||
app.chat("How many companies does Elon Musk run? Name those")
|
||||
# Answer: Elon Musk runs 3 companies: Tesla, SpaceX, and Neuralink.
|
||||
app.chat("What is his net worth today?")
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
To learn about other features, click [here](https://docs.embedchain.ai/get-started/introduction)
|
||||
</Accordion>
|
||||
</Step>
|
||||
<Step title="🚀 (Optional) Deploy your pipeline to Embedchain Platform">
|
||||
```python
|
||||
app.deploy()
|
||||
# 🔑 Enter your Embedchain API key. You can find the API key at https://app.embedchain.ai/settings/keys/
|
||||
# ec-xxxxxx
|
||||
<Step title="🚀 Seamlessly launch your App on the Embedchain Platform!">
|
||||
```python
|
||||
app.deploy()
|
||||
# 🔑 Enter your Embedchain API key. You can find the API key at https://app.embedchain.ai/settings/keys/
|
||||
# ec-xxxxxx
|
||||
|
||||
# 🛠️ Creating pipeline on the platform...
|
||||
# 🎉🎉🎉 Pipeline created successfully! View your pipeline: https://app.embedchain.ai/pipelines/xxxxx
|
||||
# 🛠️ Creating pipeline on the platform...
|
||||
# 🎉🎉🎉 Pipeline created successfully! View your pipeline: https://app.embedchain.ai/pipelines/xxxxx
|
||||
|
||||
# 🛠️ Adding data to your pipeline...
|
||||
# ✅ Data of type: web_page, value: https://www.forbes.com/profile/elon-musk added successfully.
|
||||
```
|
||||
# 🛠️ Adding data to your pipeline...
|
||||
# ✅ Data of type: web_page, value: https://www.forbes.com/profile/elon-musk added successfully.
|
||||
```
|
||||
<Accordion title="Share your app with others" icon="laptop-mobile">
|
||||
You can now share your app with others from our platform.
|
||||
Access your app on our [platform](https://app.embedchain.ai/).
|
||||
</Accordion>
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
Putting it together, you can run your first app using the following code. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "xxx"
|
||||
app = App()
|
||||
|
||||
# Add different data sources
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
# You can also add local data sources such as pdf, csv files etc.
|
||||
# app.add("/path/to/file.pdf")
|
||||
|
||||
response = app.query("What is the net worth of Elon Musk today?")
|
||||
print(response)
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
|
||||
app.deploy()
|
||||
# 🔑 Enter your Embedchain API key. You can find the API key at https://app.embedchain.ai/settings/keys/
|
||||
# ec-xxxxxx
|
||||
|
||||
# 🛠️ Creating pipeline on the platform...
|
||||
# 🎉🎉🎉 Pipeline created successfully! View your pipeline: https://app.embedchain.ai/pipelines/xxxxx
|
||||
|
||||
# 🛠️ Adding data to your pipeline...
|
||||
# ✅ Data of type: web_page, value: https://www.forbes.com/profile/elon-musk added successfully.
|
||||
```
|
||||
|
||||
You can try it out yourself using the following Google Colab notebook:
|
||||
Putting it together, you can run your first app using the following Google Colab. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
|
||||
|
||||
<a href="https://colab.research.google.com/drive/17ON1LPonnXAtLaZEebnOktstB_1cJJmh?usp=sharing">
|
||||
<img src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open in Colab" />
|
||||
|
||||
Reference in New Issue
Block a user