fix pinecone (#2414)

This commit is contained in:
Dev Khant
2025-03-20 23:47:09 +05:30
committed by GitHub
parent 8e6a08aa83
commit 3cc7013fde
2 changed files with 21 additions and 14 deletions

View File

@@ -2,6 +2,8 @@
[Pinecone](https://www.pinecone.io/) is a fully managed vector database designed for machine learning applications, offering high performance vector search with low latency at scale. It's particularly well-suited for semantic search, recommendation systems, and other AI-powered applications.
> **Note**: Before configuring Pinecone, you need to select an embedding model (e.g., OpenAI, Cohere, or custom models) and ensure the `embedding_model_dims` in your config matches your chosen model's dimensions. For example, OpenAI's text-embedding-ada-002 uses 1536 dimensions.
### Usage
```python
@@ -11,13 +13,17 @@ from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
os.environ["PINECONE_API_KEY"] = "your-api-key"
# Example using serverless configuration
config = {
"vector_store": {
"provider": "pinecone",
"config": {
"collection_name": "memory_index",
"embedding_model_dims": 1536,
"environment": "us-west1-gcp",
"collection_name": "testing",
"embedding_model_dims": 1536, # Matches OpenAI's text-embedding-3-small
"serverless_config": {
"cloud": "aws", # Choose between 'aws' or 'gcp' or 'azure'
"region": "us-east-1"
},
"metric": "cosine"
}
}
@@ -40,28 +46,29 @@ Here are the parameters available for configuring Pinecone:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | Name of the index/collection | Required |
| `embedding_model_dims` | Dimensions of the embedding model | Required |
| `embedding_model_dims` | Dimensions of the embedding model (must match your chosen embedding model) | Required |
| `client` | Existing Pinecone client instance | `None` |
| `api_key` | API key for Pinecone | Environment variable: `PINECONE_API_KEY` |
| `environment` | Pinecone environment | `None` |
| `serverless_config` | Configuration for serverless deployment | `None` |
| `serverless_config` | Configuration for serverless deployment (AWS or GCP or Azure) | `None` |
| `pod_config` | Configuration for pod-based deployment | `None` |
| `hybrid_search` | Whether to enable hybrid search | `False` |
| `metric` | Distance metric for vector similarity | `"cosine"` |
| `batch_size` | Batch size for operations | `100` |
#### Serverless Config Example
> **Important**: You must choose either `serverless_config` or `pod_config` for your deployment, but not both.
#### Serverless Config Example
```python
config = {
"vector_store": {
"provider": "pinecone",
"config": {
"collection_name": "memory_index",
"embedding_model_dims": 1536,
"embedding_model_dims": 1536, # For OpenAI's text-embedding-3-small
"serverless_config": {
"cloud": "aws",
"region": "us-west-2"
"cloud": "aws", # or "gcp" or "azure"
"region": "us-east-1" # Choose appropriate region
}
}
}
@@ -69,14 +76,13 @@ config = {
```
#### Pod Config Example
```python
config = {
"vector_store": {
"provider": "pinecone",
"config": {
"collection_name": "memory_index",
"embedding_model_dims": 1536,
"embedding_model_dims": 1536, # For OpenAI's text-embedding-ada-002
"pod_config": {
"environment": "gcp-starter",
"replicas": 1,