Feature: milvus db integration (#1821)

This commit is contained in:
k10
2024-09-10 22:06:50 +05:30
committed by GitHub
parent 5b9b65c395
commit 3bd49b57cc
9 changed files with 320 additions and 8 deletions

View File

@@ -6,7 +6,7 @@ Config in mem0 is a dictionary that specifies the settings for your vector datab
The config is defined as a Python dictionary with two main keys:
- `vector_store`: Specifies the vector database provider and its configuration
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant")
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus")
- `config`: A nested dictionary containing provider-specific settings
## How to Use Config

View File

@@ -0,0 +1,35 @@
[Milvus](https://milvus.io/) Milvus is an open-source vector database that suits AI applications of every size from running a demo chatbot in Jupyter notebook to building web-scale search that serves billions of users.
### Usage
```python
import os
from mem0 import Memory
config = {
"vector_store": {
"provider": "milvus",
"config": {
"collection_name": "test",
"embedding_model_dims": "123",
"url": "127.0.0.1",
"token": "8e4b8ca8cf2c67",
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Here's the parameters available for configuring Milvus Database:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `url` | Full URL/Uri for Milvus/Zilliz server | `http://localhost:19530` |
| `token` | Token for Zilliz server / for local setup defaults to None. | `None` |
| `collection_name` | The name of the collection | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `metric_type` | Metric type for similarity search | `L2` |