Support for langchain LLMs (#2506)
This commit is contained in:
72
docs/components/llms/models/langchain.mdx
Normal file
72
docs/components/llms/models/langchain.mdx
Normal file
@@ -0,0 +1,72 @@
|
||||
---
|
||||
title: LangChain
|
||||
---
|
||||
|
||||
Mem0 supports LangChain as a provider to access a wide range of LLM models. LangChain is a framework for developing applications powered by language models, making it easy to integrate various LLM providers through a consistent interface.
|
||||
|
||||
For a complete list of available chat models supported by LangChain, refer to the [LangChain Chat Models documentation](https://python.langchain.com/docs/integrations/chat).
|
||||
|
||||
## Usage
|
||||
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
# Set necessary environment variables for your chosen LangChain provider
|
||||
# For example, if using OpenAI through LangChain:
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "langchain",
|
||||
"config": {
|
||||
"langchain_provider": "OpenAI",
|
||||
"model": "gpt-4o",
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 2000,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
messages = [
|
||||
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
||||
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
||||
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
|
||||
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
||||
]
|
||||
m.add(messages, user_id="alice", metadata={"category": "movies"})
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Supported LangChain Providers
|
||||
|
||||
LangChain supports a wide range of LLM providers, including:
|
||||
|
||||
- OpenAI (`ChatOpenAI`)
|
||||
- Anthropic (`ChatAnthropic`)
|
||||
- Google (`ChatGoogleGenerativeAI`, `ChatGooglePalm`)
|
||||
- Mistral (`ChatMistralAI`)
|
||||
- Ollama (`ChatOllama`)
|
||||
- Azure OpenAI (`AzureChatOpenAI`)
|
||||
- HuggingFace (`HuggingFaceChatEndpoint`)
|
||||
- And many more
|
||||
|
||||
You can specify any supported provider in the `langchain_provider` parameter. For a complete and up-to-date list of available providers, refer to the [LangChain Chat Models documentation](https://python.langchain.com/docs/integrations/chat).
|
||||
|
||||
## Provider-Specific Configuration
|
||||
|
||||
When using LangChain as a provider, you'll need to:
|
||||
|
||||
1. Set the appropriate environment variables for your chosen LLM provider
|
||||
2. Specify the LangChain provider class name in the `langchain_provider` parameter
|
||||
3. Include any additional configuration parameters required by the specific provider
|
||||
|
||||
<Note>
|
||||
Make sure to install the necessary LangChain packages and any provider-specific dependencies.
|
||||
</Note>
|
||||
|
||||
## Config
|
||||
|
||||
All available parameters for the `langchain` config are present in [Master List of All Params in Config](../config).
|
||||
Reference in New Issue
Block a user