Docs Update (#2591)

This commit is contained in:
Prateek Chhikara
2025-04-29 08:15:25 -07:00
committed by GitHub
parent 6d13e83001
commit 393a4fd5a6
111 changed files with 2296 additions and 99 deletions

73
evaluation/src/zep/add.py Normal file
View File

@@ -0,0 +1,73 @@
import argparse
import json
import os
from dotenv import load_dotenv
from tqdm import tqdm
from zep_cloud import Message
from zep_cloud.client import Zep
load_dotenv()
class ZepAdd:
def __init__(self, data_path=None):
self.zep_client = Zep(api_key=os.getenv("ZEP_API_KEY"))
self.data_path = data_path
self.data = None
if data_path:
self.load_data()
def load_data(self):
with open(self.data_path, 'r') as f:
self.data = json.load(f)
return self.data
def process_conversation(self, run_id, item, idx):
conversation = item['conversation']
user_id = f"run_id_{run_id}_experiment_user_{idx}"
session_id = f"run_id_{run_id}_experiment_session_{idx}"
# # delete all memories for the two users
# self.zep_client.user.delete(user_id=user_id)
# self.zep_client.memory.delete(session_id=session_id)
self.zep_client.user.add(user_id=user_id)
self.zep_client.memory.add_session(
user_id=user_id,
session_id=session_id,
)
print("Starting to add memories... for user", user_id)
for key in tqdm(conversation.keys(), desc=f"Processing user {user_id}"):
if key in ['speaker_a', 'speaker_b'] or "date" in key:
continue
date_time_key = key + "_date_time"
timestamp = conversation[date_time_key]
chats = conversation[key]
for chat in tqdm(chats, desc=f"Adding chats for {key}", leave=False):
self.zep_client.memory.add(
session_id=session_id,
messages=[Message(
role=chat['speaker'],
role_type="user",
content=f"{timestamp}: {chat['text']}",
)]
)
def process_all_conversations(self, run_id):
if not self.data:
raise ValueError("No data loaded. Please set data_path and call load_data() first.")
for idx, item in tqdm(enumerate(self.data)):
if idx == 0:
self.process_conversation(run_id, item, idx)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--run_id", type=str, required=True)
args = parser.parse_args()
zep_add = ZepAdd(data_path="../../dataset/locomo10.json")
zep_add.process_all_conversations(args.run_id)

View File

@@ -0,0 +1,148 @@
import argparse
from collections import defaultdict
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from tqdm import tqdm
from zep_cloud import EntityEdge, EntityNode
from zep_cloud.client import Zep
import json
import os
import pandas as pd
import time
from prompts import ANSWER_PROMPT_ZEP
load_dotenv()
TEMPLATE = """
FACTS and ENTITIES represent relevant context to the current conversation.
# These are the most relevant facts and their valid date ranges
# format: FACT (Date range: from - to)
{facts}
# These are the most relevant entities
# ENTITY_NAME: entity summary
{entities}
"""
class ZepSearch:
def __init__(self):
self.zep_client = Zep(api_key=os.getenv("ZEP_API_KEY"))
self.results = defaultdict(list)
self.openai_client = OpenAI()
def format_edge_date_range(self, edge: EntityEdge) -> str:
# return f"{datetime(edge.valid_at).strftime('%Y-%m-%d %H:%M:%S') if edge.valid_at else 'date unknown'} - {(edge.invalid_at.strftime('%Y-%m-%d %H:%M:%S') if edge.invalid_at else 'present')}"
return f"{edge.valid_at if edge.valid_at else 'date unknown'} - {(edge.invalid_at if edge.invalid_at else 'present')}"
def compose_search_context(self, edges: list[EntityEdge], nodes: list[EntityNode]) -> str:
facts = [f' - {edge.fact} ({self.format_edge_date_range(edge)})' for edge in edges]
entities = [f' - {node.name}: {node.summary}' for node in nodes]
return TEMPLATE.format(facts='\n'.join(facts), entities='\n'.join(entities))
def search_memory(self, run_id, idx, query, max_retries=3, retry_delay=1):
start_time = time.time()
retries = 0
while retries < max_retries:
try:
user_id = f"run_id_{run_id}_experiment_user_{idx}"
session_id = f"run_id_{run_id}_experiment_session_{idx}"
edges_results = (self.zep_client.graph.search(user_id=user_id, reranker='cross_encoder', query=query, scope='edges', limit=20)).edges
node_results = (self.zep_client.graph.search(user_id=user_id, reranker='rrf', query=query, scope='nodes', limit=20)).nodes
context = self.compose_search_context(edges_results, node_results)
break
except Exception as e:
print("Retrying...")
retries += 1
if retries >= max_retries:
raise e
time.sleep(retry_delay)
end_time = time.time()
return context, end_time - start_time
def process_question(self, run_id, val, idx):
question = val.get('question', '')
answer = val.get('answer', '')
category = val.get('category', -1)
evidence = val.get('evidence', [])
adversarial_answer = val.get('adversarial_answer', '')
response, search_memory_time, response_time, context = self.answer_question(
run_id,
idx,
question
)
result = {
"question": question,
"answer": answer,
"category": category,
"evidence": evidence,
"response": response,
"adversarial_answer": adversarial_answer,
"search_memory_time": search_memory_time,
"response_time": response_time,
"context": context
}
return result
def answer_question(self, run_id, idx, question):
context, search_memory_time = self.search_memory(run_id, idx, question)
template = Template(ANSWER_PROMPT_ZEP)
answer_prompt = template.render(
memories=context,
question=question
)
t1 = time.time()
response = self.openai_client.chat.completions.create(
model=os.getenv("MODEL"),
messages=[
{"role": "system", "content": answer_prompt}
],
temperature=0.0
)
t2 = time.time()
response_time = t2 - t1
return response.choices[0].message.content, search_memory_time, response_time, context
def process_data_file(self, file_path, run_id, output_file_path):
with open(file_path, 'r') as f:
data = json.load(f)
for idx, item in tqdm(enumerate(data), total=len(data), desc="Processing conversations"):
qa = item['qa']
for question_item in tqdm(qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False):
result = self.process_question(
run_id,
question_item,
idx
)
self.results[idx].append(result)
# Save results after each question is processed
with open(output_file_path, 'w') as f:
json.dump(self.results, f, indent=4)
# Final save at the end
with open(output_file_path, 'w') as f:
json.dump(self.results, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--run_id", type=str, required=True)
args = parser.parse_args()
zep_search = ZepSearch()
zep_search.process_data_file("../../dataset/locomo10.json", args.run_id, "results/zep_search_results.json")