[Feature] Add support for hybrid search for pinecone vector database (#1259)

This commit is contained in:
Deshraj Yadav
2024-02-15 13:20:14 -08:00
committed by GitHub
parent 0766a44ccf
commit 38b4e06963
18 changed files with 470 additions and 326 deletions

View File

@@ -15,6 +15,7 @@ class PineconeDBConfig(BaseVectorDbConfig):
metric: Optional[str] = "cosine",
pod_config: Optional[dict[str, any]] = None,
serverless_config: Optional[dict[str, any]] = None,
hybrid_search: bool = False,
**extra_params: dict[str, any],
):
self.metric = metric
@@ -22,6 +23,7 @@ class PineconeDBConfig(BaseVectorDbConfig):
self.index_name = index_name
self.vector_dimension = vector_dimension
self.extra_params = extra_params
self.hybrid_search = hybrid_search
if pod_config is None and serverless_config is None:
# If no config is provided, use the default pod spec config
pod_environment = os.environ.get("PINECONE_ENV", "gcp-starter")
@@ -33,4 +35,9 @@ class PineconeDBConfig(BaseVectorDbConfig):
if self.pod_config and self.serverless_config:
raise ValueError("Only one of pod_config or serverless_config can be provided.")
if self.hybrid_search and self.metric != "dotproduct":
raise ValueError(
"Hybrid search is only supported with dotproduct metric in Pinecone. See full docs here: https://docs.pinecone.io/docs/hybrid-search#limitations"
) # noqa:E501
super().__init__(collection_name=self.index_name, dir=None)