Fix: Migrate Gemini Embeddings (#3002)

Co-authored-by: Dev-Khant <devkhant24@gmail.com>
This commit is contained in:
Akshat Jain
2025-06-23 13:16:10 +05:30
committed by GitHub
parent c173ec32d0
commit 386d8b87ae
5 changed files with 124 additions and 71 deletions

View File

@@ -28,3 +28,29 @@ def test_embed_query(mock_genai, config):
assert embedding == [0.1, 0.2, 0.3, 0.4]
mock_genai.assert_called_once_with(model="test_model", content="Hello, world!", output_dimensionality=786)
def test_embed_returns_empty_list_if_none(mock_genai, config):
mock_genai.return_value = None
embedder = GoogleGenAIEmbedding(config)
result = embedder.embed("test")
assert result == []
mock_genai.assert_called_once()
def test_embed_raises_on_error(mock_genai, config):
mock_genai.side_effect = RuntimeError("Embedding failed")
embedder = GoogleGenAIEmbedding(config)
with pytest.raises(RuntimeError, match="Embedding failed"):
embedder.embed("some input")
def test_config_initialization(config):
embedder = GoogleGenAIEmbedding(config)
assert embedder.config.api_key == "dummy_api_key"
assert embedder.config.model == "test_model"
assert embedder.config.embedding_dims == 786

View File

@@ -1,8 +1,7 @@
from unittest.mock import Mock, patch
import pytest
from google.generativeai import GenerationConfig
from google.generativeai.types import content_types
from google.genai import types
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.gemini import GeminiLLM
@@ -10,14 +9,14 @@ from mem0.llms.gemini import GeminiLLM
@pytest.fixture
def mock_gemini_client():
with patch("mem0.llms.gemini.GenerativeModel") as mock_gemini:
with patch("mem0.llms.gemini.genai") as mock_client_class:
mock_client = Mock()
mock_gemini.return_value = mock_client
mock_client_class.return_value = mock_client
yield mock_client
def test_generate_response_without_tools(mock_gemini_client: Mock):
config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
config = BaseLlmConfig(model="gemini-2.0-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
llm = GeminiLLM(config)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
@@ -25,6 +24,15 @@ def test_generate_response_without_tools(mock_gemini_client: Mock):
]
mock_part = Mock(text="I'm doing well, thank you for asking!")
mock_embedding = Mock()
mock_embedding.values = [0.1, 0.2, 0.3]
mock_response = Mock()
mock_response.candidates = [Mock()]
mock_response.candidates[0].content.parts = [Mock()]
mock_response.candidates[0].content.parts[0].text = "I'm doing well, thank you for asking!"
mock_gemini_client.models.generate_content.return_value = mock_response
mock_content = Mock(parts=[mock_part])
mock_message = Mock(content=mock_content)
mock_response = Mock(candidates=[mock_message])
@@ -37,15 +45,24 @@ def test_generate_response_without_tools(mock_gemini_client: Mock):
{"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"},
{"parts": "Hello, how are you?", "role": "user"},
],
generation_config=GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0),
tools=None,
tool_config=content_types.to_tool_config(
{"function_calling_config": {"mode": "auto", "allowed_function_names": None}}
),
)
config=types.GenerateContentConfig(
temperature=0.7,
max_output_tokens=100,
top_p=1.0,
tools=None,
tool_config=types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(
allowed_function_names=None,
mode="auto"
)
)
) )
assert response == "I'm doing well, thank you for asking!"
def test_generate_response_with_tools(mock_gemini_client: Mock):
config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
llm = GeminiLLM(config)
@@ -89,28 +106,46 @@ def test_generate_response_with_tools(mock_gemini_client: Mock):
mock_gemini_client.generate_content.assert_called_once_with(
contents=[
{"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"},
{"parts": "Add a new memory: Today is a sunny day.", "role": "user"},
],
generation_config=GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0),
tools=[
{
"function_declarations": [
{
"name": "add_memory",
"description": "Add a memory",
"parameters": {
"type": "object",
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
"required": ["data"],
},
}
]
}
"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.",
"role": "user"
},
{
"parts": "Add a new memory: Today is a sunny day.",
"role": "user"
},
],
tool_config=content_types.to_tool_config(
{"function_calling_config": {"mode": "auto", "allowed_function_names": None}}
),
config=types.GenerateContentConfig(
temperature=0.7,
max_output_tokens=100,
top_p=1.0,
tools=[
types.Tool(
function_declarations=[
types.FunctionDeclaration(
name="add_memory",
description="Add a memory",
parameters={
"type": "object",
"properties": {
"data": {
"type": "string",
"description": "Data to add to memory"
}
},
"required": ["data"]
}
)
]
)
],
tool_config=types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(
allowed_function_names=None,
mode="auto"
)
)
)
)
assert response["content"] == "I've added the memory for you."