[Refactor] Improve logging package wide (#1315)
This commit is contained in:
@@ -32,6 +32,8 @@ from embedchain.utils.misc import validate_config
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
from embedchain.vectordb.chroma import ChromaDB
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class App(EmbedChain):
|
||||
@@ -50,10 +52,10 @@ class App(EmbedChain):
|
||||
embedding_model: BaseEmbedder = None,
|
||||
llm: BaseLlm = None,
|
||||
config_data: dict = None,
|
||||
log_level=logging.WARN,
|
||||
auto_deploy: bool = False,
|
||||
chunker: ChunkerConfig = None,
|
||||
cache_config: CacheConfig = None,
|
||||
log_level: int = logging.WARN,
|
||||
):
|
||||
"""
|
||||
Initialize a new `App` instance.
|
||||
@@ -68,8 +70,6 @@ class App(EmbedChain):
|
||||
:type llm: BaseLlm, optional
|
||||
:param config_data: Config dictionary, defaults to None
|
||||
:type config_data: dict, optional
|
||||
:param log_level: Log level to use, defaults to logging.WARN
|
||||
:type log_level: int, optional
|
||||
:param auto_deploy: Whether to deploy the pipeline automatically, defaults to False
|
||||
:type auto_deploy: bool, optional
|
||||
:raises Exception: If an error occurs while creating the pipeline
|
||||
@@ -83,13 +83,12 @@ class App(EmbedChain):
|
||||
if name and config:
|
||||
raise Exception("Cannot provide both name and config. Please provide only one of them.")
|
||||
|
||||
# logging.basicConfig(level=log_level, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
logger.debug("4.0")
|
||||
# Initialize the metadata db for the app
|
||||
setup_engine(database_uri=os.environ.get("EMBEDCHAIN_DB_URI"))
|
||||
init_db()
|
||||
|
||||
logger.debug("4.0")
|
||||
self.auto_deploy = auto_deploy
|
||||
# Store the dict config as an attribute to be able to send it
|
||||
self.config_data = config_data if (config_data and validate_config(config_data)) else None
|
||||
@@ -119,6 +118,7 @@ class App(EmbedChain):
|
||||
self.llm = llm or OpenAILlm()
|
||||
self._init_db()
|
||||
|
||||
logger.debug("4.1")
|
||||
# Session for the metadata db
|
||||
self.db_session = get_session()
|
||||
|
||||
@@ -126,6 +126,7 @@ class App(EmbedChain):
|
||||
if self.cache_config is not None:
|
||||
self._init_cache()
|
||||
|
||||
logger.debug("4.2")
|
||||
# Send anonymous telemetry
|
||||
self._telemetry_props = {"class": self.__class__.__name__}
|
||||
self.telemetry = AnonymousTelemetry(enabled=self.config.collect_metrics)
|
||||
@@ -238,7 +239,7 @@ class App(EmbedChain):
|
||||
response.raise_for_status()
|
||||
return response.status_code == 200
|
||||
except Exception as e:
|
||||
self.logger.exception(f"Error occurred during file upload: {str(e)}")
|
||||
logger.exception(f"Error occurred during file upload: {str(e)}")
|
||||
print("❌ Error occurred during file upload!")
|
||||
return False
|
||||
|
||||
@@ -272,7 +273,7 @@ class App(EmbedChain):
|
||||
metadata = {"file_path": data_value, "s3_key": s3_key}
|
||||
data_value = presigned_url
|
||||
else:
|
||||
self.logger.error(f"File upload failed for hash: {data_hash}")
|
||||
logger.error(f"File upload failed for hash: {data_hash}")
|
||||
return False
|
||||
else:
|
||||
if data_type == "qna_pair":
|
||||
@@ -336,6 +337,7 @@ class App(EmbedChain):
|
||||
:return: An instance of the App class.
|
||||
:rtype: App
|
||||
"""
|
||||
logger.debug("6")
|
||||
# Backward compatibility for yaml_path
|
||||
if yaml_path and not config_path:
|
||||
config_path = yaml_path
|
||||
@@ -357,15 +359,13 @@ class App(EmbedChain):
|
||||
elif config and isinstance(config, dict):
|
||||
config_data = config
|
||||
else:
|
||||
logging.error(
|
||||
logger.error(
|
||||
"Please provide either a config file path (YAML or JSON) or a config dictionary. Falling back to defaults because no config is provided.", # noqa: E501
|
||||
)
|
||||
config_data = {}
|
||||
|
||||
try:
|
||||
validate_config(config_data)
|
||||
except Exception as e:
|
||||
raise Exception(f"Error occurred while validating the config. Error: {str(e)}")
|
||||
# Validate the config
|
||||
validate_config(config_data)
|
||||
|
||||
app_config_data = config_data.get("app", {}).get("config", {})
|
||||
vector_db_config_data = config_data.get("vectordb", {})
|
||||
@@ -477,12 +477,12 @@ class App(EmbedChain):
|
||||
EvalMetric.GROUNDEDNESS.value,
|
||||
]
|
||||
|
||||
logging.info(f"Collecting data from {len(queries)} questions for evaluation...")
|
||||
logger.info(f"Collecting data from {len(queries)} questions for evaluation...")
|
||||
dataset = []
|
||||
for q, a, c in zip(queries, answers, contexts):
|
||||
dataset.append(EvalData(question=q, answer=a, contexts=c))
|
||||
|
||||
logging.info(f"Evaluating {len(dataset)} data points...")
|
||||
logger.info(f"Evaluating {len(dataset)} data points...")
|
||||
result = {}
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||
future_to_metric = {executor.submit(self._eval, dataset, metric): metric for metric in metrics}
|
||||
|
||||
Reference in New Issue
Block a user