refactor: classes and configs (#528)

This commit is contained in:
cachho
2023-09-05 10:12:58 +02:00
committed by GitHub
parent 387b042a49
commit 344e7470f6
50 changed files with 1221 additions and 997 deletions

View File

@@ -1,4 +1,4 @@
from typing import Any, Callable, Dict, List
from typing import Any, Dict, List
try:
from elasticsearch import Elasticsearch
@@ -10,7 +10,6 @@ except ImportError:
from embedchain.config import ElasticsearchDBConfig
from embedchain.helper_classes.json_serializable import register_deserializable
from embedchain.models.VectorDimensions import VectorDimensions
from embedchain.vectordb.base_vector_db import BaseVectorDB
@@ -18,43 +17,40 @@ from embedchain.vectordb.base_vector_db import BaseVectorDB
class ElasticsearchDB(BaseVectorDB):
def __init__(
self,
es_config: ElasticsearchDBConfig = None,
embedding_fn: Callable[[list[str]], list[str]] = None,
vector_dim: VectorDimensions = None,
collection_name: str = None,
config: ElasticsearchDBConfig = None,
es_config: ElasticsearchDBConfig = None, # Backwards compatibility
):
"""
Elasticsearch as vector database
:param es_config. elasticsearch database config to be used for connection
:param embedding_fn: Function to generate embedding vectors.
:param vector_dim: Vector dimension generated by embedding fn
:param collection_name: Optional. Collection name for the database.
"""
if not hasattr(embedding_fn, "__call__"):
raise ValueError("Embedding function is not a function")
if es_config is None:
if config is None and es_config is None:
raise ValueError("ElasticsearchDBConfig is required")
if vector_dim is None:
raise ValueError("Vector Dimension is required to refer correct index and mapping")
if collection_name is None:
raise ValueError("collection name is required. It cannot be empty")
self.embedding_fn = embedding_fn
self.config = config or es_config
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
self.vector_dim = vector_dim
self.es_index = f"{collection_name}_{self.vector_dim}"
# Call parent init here because embedder is needed
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
"""
index_settings = {
"mappings": {
"properties": {
"text": {"type": "text"},
"embeddings": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
"embeddings": {"type": "dense_vector", "index": False, "dims": self.embedder.vector_dimension},
}
}
}
if not self.client.indices.exists(index=self.es_index):
es_index = self._get_index()
if not self.client.indices.exists(index=es_index):
# create index if not exist
print("Creating index", self.es_index, index_settings)
self.client.indices.create(index=self.es_index, body=index_settings)
super().__init__()
print("Creating index", es_index, index_settings)
self.client.indices.create(index=es_index, body=index_settings)
def _get_or_create_db(self):
return self.client
@@ -85,17 +81,17 @@ class ElasticsearchDB(BaseVectorDB):
:param ids: ids of docs
"""
docs = []
embeddings = self.embedding_fn(documents)
embeddings = self.config.embedding_fn(documents)
for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
docs.append(
{
"_index": self.es_index,
"_index": self._get_index(),
"_id": id,
"_source": {"text": text, "metadata": metadata, "embeddings": embeddings},
}
)
bulk(self.client, docs)
self.client.indices.refresh(index=self.es_index)
self.client.indices.refresh(index=self._get_index())
return
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
@@ -105,7 +101,7 @@ class ElasticsearchDB(BaseVectorDB):
:param n_results: no of similar documents to fetch from database
:param where: Optional. to filter data
"""
input_query_vector = self.embedding_fn(input_query)
input_query_vector = self.config.embedding_fn(input_query)
query_vector = input_query_vector[0]
query = {
"script_score": {
@@ -120,11 +116,14 @@ class ElasticsearchDB(BaseVectorDB):
app_id = where["app_id"]
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
_source = ["text"]
response = self.client.search(index=self.es_index, query=query, _source=_source, size=n_results)
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contents = [doc["_source"]["text"] for doc in docs]
return contents
def set_collection_name(self, name: str):
self.config.collection_name = name
def count(self) -> int:
query = {"match_all": {}}
response = self.client.count(index=self.es_index, query=query)
@@ -136,3 +135,8 @@ class ElasticsearchDB(BaseVectorDB):
if self.client.indices.exists(index=self.es_index):
# delete index in Es
self.client.indices.delete(index=self.es_index)
def _get_index(self):
# NOTE: The method is preferred to an attribute, because if collection name changes,
# it's always up-to-date.
return f"{self.config.collection_name}_{self.config.vector_dim}"