refactor: classes and configs (#528)

This commit is contained in:
cachho
2023-09-05 10:12:58 +02:00
committed by GitHub
parent 387b042a49
commit 344e7470f6
50 changed files with 1221 additions and 997 deletions

View File

@@ -1,11 +1,22 @@
from embedchain.config.vectordbs.BaseVectorDbConfig import BaseVectorDbConfig
from embedchain.embedder.base_embedder import BaseEmbedder
from embedchain.helper_classes.json_serializable import JSONSerializable
class BaseVectorDB(JSONSerializable):
"""Base class for vector database."""
def __init__(self):
def __init__(self, config: BaseVectorDbConfig):
self.client = self._get_or_create_db()
self.config: BaseVectorDbConfig = config
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
So it's can't be done in __init__ in one step.
"""
raise NotImplementedError
def _get_or_create_db(self):
"""Get or create the database."""
@@ -14,6 +25,9 @@ class BaseVectorDB(JSONSerializable):
def _get_or_create_collection(self):
raise NotImplementedError
def _set_embedder(self, embedder: BaseEmbedder):
self.embedder = embedder
def get(self):
raise NotImplementedError
@@ -28,3 +42,6 @@ class BaseVectorDB(JSONSerializable):
def reset(self):
raise NotImplementedError
def set_collection_name(self, name: str):
raise NotImplementedError

View File

@@ -1,53 +1,63 @@
import logging
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
from chromadb.errors import InvalidDimensionException
from langchain.docstore.document import Document
from embedchain.config import ChromaDbConfig
from embedchain.helper_classes.json_serializable import register_deserializable
from embedchain.vectordb.base_vector_db import BaseVectorDB
try:
import chromadb
from chromadb.config import Settings
from chromadb.errors import InvalidDimensionException
except RuntimeError:
from embedchain.utils import use_pysqlite3
use_pysqlite3()
import chromadb
from chromadb.config import Settings
from embedchain.helper_classes.json_serializable import register_deserializable
from embedchain.vectordb.base_vector_db import BaseVectorDB
from chromadb.config import Settings
from chromadb.errors import InvalidDimensionException
@register_deserializable
class ChromaDB(BaseVectorDB):
"""Vector database using ChromaDB."""
def __init__(self, db_dir=None, embedding_fn=None, host=None, port=None, chroma_settings={}):
self.embedding_fn = embedding_fn
if not hasattr(embedding_fn, "__call__"):
raise ValueError("Embedding function is not a function")
def __init__(self, config: Optional[ChromaDbConfig] = None):
if config:
self.config = config
else:
self.config = ChromaDbConfig()
self.settings = Settings()
for key, value in chroma_settings.items():
if hasattr(self.settings, key):
setattr(self.settings, key, value)
if self.config.chroma_settings:
for key, value in self.config.chroma_settings.items():
if hasattr(self.settings, key):
setattr(self.settings, key, value)
if host and port:
logging.info(f"Connecting to ChromaDB server: {host}:{port}")
self.settings.chroma_server_host = host
self.settings.chroma_server_http_port = port
if self.config.host and self.config.port:
logging.info(f"Connecting to ChromaDB server: {self.config.host}:{self.config.port}")
self.settings.chroma_server_host = self.config.host
self.settings.chroma_server_http_port = self.config.port
self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI"
else:
if db_dir is None:
db_dir = "db"
if self.config.dir is None:
self.config.dir = "db"
self.settings.persist_directory = db_dir
self.settings.persist_directory = self.config.dir
self.settings.is_persistent = True
self.client = chromadb.Client(self.settings)
super().__init__()
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
"""
if not self.embedder:
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
self._get_or_create_collection(self.config.collection_name)
def _get_or_create_db(self):
"""Get or create the database."""
@@ -55,9 +65,11 @@ class ChromaDB(BaseVectorDB):
def _get_or_create_collection(self, name):
"""Get or create the collection."""
if not hasattr(self, "embedder") or not self.embedder:
raise ValueError("Cannot create a Chroma database collection without an embedder.")
self.collection = self.client.get_or_create_collection(
name=name,
embedding_function=self.embedding_fn,
embedding_function=self.embedder.embedding_fn,
)
return self.collection
@@ -119,9 +131,37 @@ class ChromaDB(BaseVectorDB):
contents = [result[0].page_content for result in results_formatted]
return contents
def set_collection_name(self, name: str):
self.config.collection_name = name
self._get_or_create_collection(self.config.collection_name)
def count(self) -> int:
"""
Count the number of embeddings.
:return: The number of embeddings.
"""
return self.collection.count()
def reset(self):
"""
Resets the database. Deletes all embeddings irreversibly.
`App` does not have to be reinitialized after using this method.
"""
# Delete all data from the database
self.client.reset()
try:
self.client.reset()
except ValueError:
raise ValueError(
"For safety reasons, resetting is disabled."
'Please enable it by including `chromadb_settings={"allow_reset": True}` in your ChromaDbConfig'
) from None
# Recreate
self._get_or_create_collection(self.config.collection_name)
# Todo: Automatically recreating a collection with the same name cannot be the best way to handle a reset.
# A downside of this implementation is, if you have two instances,
# the other instance will not get the updated `self.collection` attribute.
# A better way would be to create the collection if it is called again after being reset.
# That means, checking if collection exists in the db-consuming methods, and creating it if it doesn't.
# That's an extra steps for all uses, just to satisfy a niche use case in a niche method. For now, this will do.

View File

@@ -1,4 +1,4 @@
from typing import Any, Callable, Dict, List
from typing import Any, Dict, List
try:
from elasticsearch import Elasticsearch
@@ -10,7 +10,6 @@ except ImportError:
from embedchain.config import ElasticsearchDBConfig
from embedchain.helper_classes.json_serializable import register_deserializable
from embedchain.models.VectorDimensions import VectorDimensions
from embedchain.vectordb.base_vector_db import BaseVectorDB
@@ -18,43 +17,40 @@ from embedchain.vectordb.base_vector_db import BaseVectorDB
class ElasticsearchDB(BaseVectorDB):
def __init__(
self,
es_config: ElasticsearchDBConfig = None,
embedding_fn: Callable[[list[str]], list[str]] = None,
vector_dim: VectorDimensions = None,
collection_name: str = None,
config: ElasticsearchDBConfig = None,
es_config: ElasticsearchDBConfig = None, # Backwards compatibility
):
"""
Elasticsearch as vector database
:param es_config. elasticsearch database config to be used for connection
:param embedding_fn: Function to generate embedding vectors.
:param vector_dim: Vector dimension generated by embedding fn
:param collection_name: Optional. Collection name for the database.
"""
if not hasattr(embedding_fn, "__call__"):
raise ValueError("Embedding function is not a function")
if es_config is None:
if config is None and es_config is None:
raise ValueError("ElasticsearchDBConfig is required")
if vector_dim is None:
raise ValueError("Vector Dimension is required to refer correct index and mapping")
if collection_name is None:
raise ValueError("collection name is required. It cannot be empty")
self.embedding_fn = embedding_fn
self.config = config or es_config
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
self.vector_dim = vector_dim
self.es_index = f"{collection_name}_{self.vector_dim}"
# Call parent init here because embedder is needed
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
"""
index_settings = {
"mappings": {
"properties": {
"text": {"type": "text"},
"embeddings": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
"embeddings": {"type": "dense_vector", "index": False, "dims": self.embedder.vector_dimension},
}
}
}
if not self.client.indices.exists(index=self.es_index):
es_index = self._get_index()
if not self.client.indices.exists(index=es_index):
# create index if not exist
print("Creating index", self.es_index, index_settings)
self.client.indices.create(index=self.es_index, body=index_settings)
super().__init__()
print("Creating index", es_index, index_settings)
self.client.indices.create(index=es_index, body=index_settings)
def _get_or_create_db(self):
return self.client
@@ -85,17 +81,17 @@ class ElasticsearchDB(BaseVectorDB):
:param ids: ids of docs
"""
docs = []
embeddings = self.embedding_fn(documents)
embeddings = self.config.embedding_fn(documents)
for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
docs.append(
{
"_index": self.es_index,
"_index": self._get_index(),
"_id": id,
"_source": {"text": text, "metadata": metadata, "embeddings": embeddings},
}
)
bulk(self.client, docs)
self.client.indices.refresh(index=self.es_index)
self.client.indices.refresh(index=self._get_index())
return
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
@@ -105,7 +101,7 @@ class ElasticsearchDB(BaseVectorDB):
:param n_results: no of similar documents to fetch from database
:param where: Optional. to filter data
"""
input_query_vector = self.embedding_fn(input_query)
input_query_vector = self.config.embedding_fn(input_query)
query_vector = input_query_vector[0]
query = {
"script_score": {
@@ -120,11 +116,14 @@ class ElasticsearchDB(BaseVectorDB):
app_id = where["app_id"]
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
_source = ["text"]
response = self.client.search(index=self.es_index, query=query, _source=_source, size=n_results)
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contents = [doc["_source"]["text"] for doc in docs]
return contents
def set_collection_name(self, name: str):
self.config.collection_name = name
def count(self) -> int:
query = {"match_all": {}}
response = self.client.count(index=self.es_index, query=query)
@@ -136,3 +135,8 @@ class ElasticsearchDB(BaseVectorDB):
if self.client.indices.exists(index=self.es_index):
# delete index in Es
self.client.indices.delete(index=self.es_index)
def _get_index(self):
# NOTE: The method is preferred to an attribute, because if collection name changes,
# it's always up-to-date.
return f"{self.config.collection_name}_{self.config.vector_dim}"