refactor: classes and configs (#528)
This commit is contained in:
@@ -1,7 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
from chromadb.utils import embedding_functions
|
||||
|
||||
from embedchain.helper_classes.json_serializable import register_deserializable
|
||||
|
||||
from .BaseAppConfig import BaseAppConfig
|
||||
@@ -16,47 +14,21 @@ class OpenSourceAppConfig(BaseAppConfig):
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
host=None,
|
||||
port=None,
|
||||
id=None,
|
||||
collection_name=None,
|
||||
collect_metrics: Optional[bool] = None,
|
||||
model=None,
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param collection_name: Optional. Collection name for the database.
|
||||
:param host: Optional. Hostname for the database server.
|
||||
:param port: Optional. Port for the database server.
|
||||
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
|
||||
:param model: Optional. GPT4ALL uses the model to instantiate the class.
|
||||
So unlike `App`, it has to be provided before querying.
|
||||
:param collection_name: Optional. Default collection name.
|
||||
It's recommended to use app.db.set_collection_name() instead.
|
||||
"""
|
||||
self.model = model or "orca-mini-3b.ggmlv3.q4_0.bin"
|
||||
|
||||
super().__init__(
|
||||
log_level=log_level,
|
||||
embedding_fn=OpenSourceAppConfig.default_embedding_function(),
|
||||
host=host,
|
||||
port=port,
|
||||
id=id,
|
||||
collection_name=collection_name,
|
||||
collect_metrics=collect_metrics,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def default_embedding_function():
|
||||
"""
|
||||
Sets embedding function to default (`all-MiniLM-L6-v2`).
|
||||
|
||||
:returns: The default embedding function
|
||||
"""
|
||||
try:
|
||||
return embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
raise ModuleNotFoundError(
|
||||
"The open source app requires extra dependencies. Install with `pip install embedchain[opensource]`"
|
||||
) from None
|
||||
super().__init__(log_level=log_level, id=id, collect_metrics=collect_metrics, collection_name=collection_name)
|
||||
|
||||
Reference in New Issue
Block a user