refactor: classes and configs (#528)
This commit is contained in:
@@ -1,12 +1,8 @@
|
||||
from typing import Any, Optional
|
||||
from typing import Optional
|
||||
|
||||
from chromadb.api.types import Documents, Embeddings
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from embedchain.config.vectordbs import ElasticsearchDBConfig
|
||||
from embedchain.helper_classes.json_serializable import register_deserializable
|
||||
from embedchain.models import (EmbeddingFunctions, Providers, VectorDatabases,
|
||||
VectorDimensions)
|
||||
|
||||
from .BaseAppConfig import BaseAppConfig
|
||||
|
||||
@@ -22,123 +18,23 @@ class CustomAppConfig(BaseAppConfig):
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
embedding_fn: EmbeddingFunctions = None,
|
||||
embedding_fn_model=None,
|
||||
db=None,
|
||||
host=None,
|
||||
port=None,
|
||||
id=None,
|
||||
collection_name=None,
|
||||
provider: Providers = None,
|
||||
open_source_app_config=None,
|
||||
deployment_name=None,
|
||||
collect_metrics: Optional[bool] = None,
|
||||
db_type: VectorDatabases = None,
|
||||
es_config: ElasticsearchDBConfig = None,
|
||||
chroma_settings: dict = {},
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
:param embedding_fn: Optional. Embedding function to use.
|
||||
:param embedding_fn_model: Optional. Model name to use for embedding function.
|
||||
:param db: Optional. (Vector) database to use for embeddings.
|
||||
:param host: Optional. Hostname for the database server.
|
||||
:param port: Optional. Port for the database server.
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param collection_name: Optional. Collection name for the database.
|
||||
:param provider: Optional. (Providers): LLM Provider to use.
|
||||
:param open_source_app_config: Optional. Config instance needed for open source apps.
|
||||
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
|
||||
:param db_type: Optional. type of Vector database to use.
|
||||
:param es_config: Optional. elasticsearch database config to be used for connection
|
||||
:param chroma_settings: Optional. Chroma settings for connection.
|
||||
:param collection_name: Optional. Default collection name.
|
||||
It's recommended to use app.set_collection_name() instead.
|
||||
"""
|
||||
if provider:
|
||||
self.provider = provider
|
||||
else:
|
||||
raise ValueError("CustomApp must have a provider assigned.")
|
||||
|
||||
self.open_source_app_config = open_source_app_config
|
||||
|
||||
super().__init__(
|
||||
log_level=log_level,
|
||||
embedding_fn=CustomAppConfig.embedding_function(
|
||||
embedding_function=embedding_fn, model=embedding_fn_model, deployment_name=deployment_name
|
||||
),
|
||||
db=db,
|
||||
host=host,
|
||||
port=port,
|
||||
id=id,
|
||||
collection_name=collection_name,
|
||||
collect_metrics=collect_metrics,
|
||||
db_type=db_type,
|
||||
vector_dim=CustomAppConfig.get_vector_dimension(embedding_function=embedding_fn),
|
||||
es_config=es_config,
|
||||
chroma_settings=chroma_settings,
|
||||
log_level=log_level, db=db, id=id, collect_metrics=collect_metrics, collection_name=collection_name
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def langchain_default_concept(embeddings: Any):
|
||||
"""
|
||||
Langchains default function layout for embeddings.
|
||||
"""
|
||||
|
||||
def embed_function(texts: Documents) -> Embeddings:
|
||||
return embeddings.embed_documents(texts)
|
||||
|
||||
return embed_function
|
||||
|
||||
@staticmethod
|
||||
def embedding_function(embedding_function: EmbeddingFunctions, model: str = None, deployment_name: str = None):
|
||||
if not isinstance(embedding_function, EmbeddingFunctions):
|
||||
raise ValueError(
|
||||
f"Invalid option: '{embedding_function}'. Expecting one of the following options: {list(map(lambda x: x.value, EmbeddingFunctions))}" # noqa: E501
|
||||
)
|
||||
|
||||
if embedding_function == EmbeddingFunctions.OPENAI:
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
|
||||
if model:
|
||||
embeddings = OpenAIEmbeddings(model=model)
|
||||
else:
|
||||
if deployment_name:
|
||||
embeddings = OpenAIEmbeddings(deployment=deployment_name)
|
||||
else:
|
||||
embeddings = OpenAIEmbeddings()
|
||||
return CustomAppConfig.langchain_default_concept(embeddings)
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.HUGGING_FACE:
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
embeddings = HuggingFaceEmbeddings(model_name=model)
|
||||
return CustomAppConfig.langchain_default_concept(embeddings)
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.VERTEX_AI:
|
||||
from langchain.embeddings import VertexAIEmbeddings
|
||||
|
||||
embeddings = VertexAIEmbeddings(model_name=model)
|
||||
return CustomAppConfig.langchain_default_concept(embeddings)
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.GPT4ALL:
|
||||
# Note: We could use langchains GPT4ALL embedding, but it's not available in all versions.
|
||||
from chromadb.utils import embedding_functions
|
||||
|
||||
return embedding_functions.SentenceTransformerEmbeddingFunction(model_name=model)
|
||||
|
||||
@staticmethod
|
||||
def get_vector_dimension(embedding_function: EmbeddingFunctions):
|
||||
if not isinstance(embedding_function, EmbeddingFunctions):
|
||||
raise ValueError(f"Invalid option: '{embedding_function}'.")
|
||||
|
||||
if embedding_function == EmbeddingFunctions.OPENAI:
|
||||
return VectorDimensions.OPENAI.value
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.HUGGING_FACE:
|
||||
return VectorDimensions.HUGGING_FACE.value
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.VERTEX_AI:
|
||||
return VectorDimensions.VERTEX_AI.value
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.GPT4ALL:
|
||||
return VectorDimensions.GPT4ALL.value
|
||||
|
||||
Reference in New Issue
Block a user