refactor: classes and configs (#528)
This commit is contained in:
@@ -69,16 +69,27 @@ app = OpenSourceApp()
|
||||
|
||||
```python
|
||||
from embedchain import CustomApp
|
||||
from embedchain.config import CustomAppConfig
|
||||
from embedchain.models import Providers, EmbeddingFunctions
|
||||
from embedchain.config import (CustomAppConfig, ElasticsearchDBConfig,
|
||||
EmbedderConfig, LlmConfig)
|
||||
from embedchain.embedder.vertexai_embedder import VertexAiEmbedder
|
||||
from embedchain.llm.vertex_ai_llm import VertexAiLlm
|
||||
from embedchain.models import EmbeddingFunctions, Providers
|
||||
from embedchain.vectordb.elasticsearch_db import Elasticsearch
|
||||
|
||||
config = CustomAppConfig(embedding_fn=EmbeddingFunctions.OPENAI, provider=Providers.OPENAI)
|
||||
app = CustomApp(config)
|
||||
# short
|
||||
app = CustomApp(llm=VertexAiLlm(), db=Elasticsearch(), embedder=VertexAiEmbedder())
|
||||
# with configs
|
||||
app = CustomApp(
|
||||
config=CustomAppConfig(log_level="INFO"),
|
||||
llm=VertexAiLlm(config=LlmConfig(number_documents=5)),
|
||||
db=Elasticsearch(config=ElasticsearchDBConfig(es_url="...")),
|
||||
embedder=VertexAiEmbedder(config=EmbedderConfig()),
|
||||
)
|
||||
```
|
||||
|
||||
- `CustomApp` is not opinionated.
|
||||
- Configuration required. It's for advanced users who want to mix and match different embedding models and LLMs. Configuration required.
|
||||
- while it's doing that, it's still providing abstractions through `Providers`.
|
||||
- Configuration required. It's for advanced users who want to mix and match different embedding models and LLMs.
|
||||
- while it's doing that, it's still providing abstractions by allowing you to import Classes from `embedchain.llm`, `embedchain.vectordb`, and `embedchain.embedder`.
|
||||
- paid and free/open source providers included.
|
||||
- Once you have imported and instantiated the app, every functionality from here onwards is the same for either type of app. 📚
|
||||
- Following providers are available for an LLM
|
||||
@@ -87,6 +98,7 @@ app = CustomApp(config)
|
||||
- VERTEX_AI
|
||||
- GPT4ALL
|
||||
- AZURE_OPENAI
|
||||
- LLAMA2
|
||||
- Following embedding functions are available for an embedding function
|
||||
- OPENAI
|
||||
- HUGGING_FACE
|
||||
|
||||
@@ -4,6 +4,16 @@ title: '⚙️ Custom configurations'
|
||||
|
||||
Embedchain is made to work out of the box. However, for advanced users we're also offering configuration options. All of these configuration options are optional and have sane defaults.
|
||||
|
||||
## Concept
|
||||
The main `App` class is available in the following varieties: `CustomApp`, `OpenSourceApp` and `Llama2App` and `App`. The first is fully configurable, the others are opinionated in some aspects.
|
||||
|
||||
The `App` class has three subclasses: `llm`, `db` and `embedder`. These are the core ingredients that make up an EmbedChain app.
|
||||
App plus each one of the subclasses have a `config` attribute.
|
||||
You can pass a `Config` instance as an argument during initialization to persistently configure a class.
|
||||
These configs can be imported from `embedchain.config`
|
||||
|
||||
There are `set` methods for some things that should not (only) be set at start-up, like `app.db.set_collection_name`.
|
||||
|
||||
## Examples
|
||||
|
||||
### General
|
||||
@@ -11,31 +21,31 @@ Embedchain is made to work out of the box. However, for advanced users we're als
|
||||
Here's the readme example with configuration options.
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain.config import AppConfig, AddConfig, QueryConfig, ChunkerConfig
|
||||
from chromadb.utils import embedding_functions
|
||||
from embedchain.config import AppConfig, AddConfig, LlmConfig, ChunkerConfig
|
||||
|
||||
# Example: set the log level for debugging
|
||||
config = AppConfig(log_level="DEBUG")
|
||||
naval_chat_bot = App(config)
|
||||
|
||||
# Example: specify a custom collection name
|
||||
config = AppConfig(collection_name="naval_chat_bot")
|
||||
naval_chat_bot = App(config)
|
||||
naval_chat_bot.db.set_collection_name("naval_chat_bot")
|
||||
|
||||
# Example: define your own chunker config for `youtube_video`
|
||||
chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=100, length_function=len)
|
||||
naval_chat_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44", AddConfig(chunker=chunker_config))
|
||||
# Example: Add your chunker config to an AddConfig to actually use it
|
||||
add_config = AddConfig(chunker=chunker_config)
|
||||
naval_chat_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44", config=add_config)
|
||||
|
||||
# Example: Reset to default
|
||||
add_config = AddConfig()
|
||||
naval_chat_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf", config=add_config)
|
||||
naval_chat_bot.add("https://nav.al/feedback", config=add_config)
|
||||
naval_chat_bot.add("https://nav.al/agi", config=add_config)
|
||||
|
||||
naval_chat_bot.add(("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."), config=add_config)
|
||||
|
||||
query_config = QueryConfig()
|
||||
# Change the number of documents.
|
||||
query_config = LlmConfig(number_documents=5)
|
||||
print(naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?", config=query_config))
|
||||
```
|
||||
|
||||
@@ -44,11 +54,13 @@ print(naval_chat_bot.query("What unique capacity does Naval argue humans possess
|
||||
Here's the example of using custom prompt template with `.query`
|
||||
|
||||
```python
|
||||
from embedchain.config import QueryConfig
|
||||
from embedchain.embedchain import App
|
||||
from string import Template
|
||||
|
||||
import wikipedia
|
||||
|
||||
from embedchain import App
|
||||
from embedchain.config import LlmConfig
|
||||
|
||||
einstein_chat_bot = App()
|
||||
|
||||
# Embed Wikipedia page
|
||||
@@ -56,7 +68,8 @@ page = wikipedia.page("Albert Einstein")
|
||||
einstein_chat_bot.add(page.content)
|
||||
|
||||
# Example: use your own custom template with `$context` and `$query`
|
||||
einstein_chat_template = Template("""
|
||||
einstein_chat_template = Template(
|
||||
"""
|
||||
You are Albert Einstein, a German-born theoretical physicist,
|
||||
widely ranked among the greatest and most influential scientists of all time.
|
||||
|
||||
@@ -67,17 +80,19 @@ einstein_chat_template = Template("""
|
||||
Keep the response brief. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
|
||||
Human: $query
|
||||
Albert Einstein:""")
|
||||
query_config = QueryConfig(template=einstein_chat_template, system_prompt="You are Albert Einstein.")
|
||||
Albert Einstein:"""
|
||||
)
|
||||
# Example: Use the template, also add a system prompt.
|
||||
llm_config = LlmConfig(template=einstein_chat_template, system_prompt="You are Albert Einstein.")
|
||||
queries = [
|
||||
"Where did you complete your studies?",
|
||||
"Why did you win nobel prize?",
|
||||
"Why did you divorce your first wife?",
|
||||
"Where did you complete your studies?",
|
||||
"Why did you win nobel prize?",
|
||||
"Why did you divorce your first wife?",
|
||||
]
|
||||
for query in queries:
|
||||
response = einstein_chat_bot.query(query, config=query_config)
|
||||
print("Query: ", query)
|
||||
print("Response: ", response)
|
||||
response = einstein_chat_bot.query(query, config=llm_config)
|
||||
print("Query: ", query)
|
||||
print("Response: ", response)
|
||||
|
||||
# Output
|
||||
# Query: Where did you complete your studies?
|
||||
|
||||
@@ -53,7 +53,7 @@ Default values of chunker config parameters for different `data_type`:
|
||||
|
||||
_coming soon_
|
||||
|
||||
## QueryConfig
|
||||
## LlmConfig
|
||||
|
||||
|option|description|type|default|
|
||||
|---|---|---|---|
|
||||
|
||||
Reference in New Issue
Block a user