Supabase Vector Store (#2427)
This commit is contained in:
@@ -4,7 +4,8 @@ Create a [Supabase](https://supabase.com/dashboard/projects) account and project
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -32,10 +33,90 @@ messages = [
|
||||
m.add(messages, user_id="alice", metadata={"category": "movies"})
|
||||
```
|
||||
|
||||
```typescript Typescript
|
||||
import { Memory } from "mem0ai/oss";
|
||||
|
||||
const config = {
|
||||
vectorStore: {
|
||||
provider: "supabase",
|
||||
config: {
|
||||
collectionName: "memories",
|
||||
embeddingModelDims: 1536,
|
||||
supabaseUrl: process.env.SUPABASE_URL || "",
|
||||
supabaseKey: process.env.SUPABASE_KEY || "",
|
||||
tableName: "memories",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
const memory = new Memory(config);
|
||||
|
||||
const messages = [
|
||||
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
||||
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
||||
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
|
||||
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
||||
]
|
||||
|
||||
await memory.add(messages, { userId: "alice", metadata: { category: "movies" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### SQL Migrations for TypeScript Implementation
|
||||
|
||||
The following SQL migrations are required to enable the vector extension and create the memories table:
|
||||
|
||||
```sql
|
||||
-- Enable the vector extension
|
||||
create extension if not exists vector;
|
||||
|
||||
-- Create the memories table
|
||||
create table if not exists memories (
|
||||
id text primary key,
|
||||
embedding vector(1536),
|
||||
metadata jsonb,
|
||||
created_at timestamp with time zone default timezone('utc', now()),
|
||||
updated_at timestamp with time zone default timezone('utc', now())
|
||||
);
|
||||
|
||||
-- Create the vector similarity search function
|
||||
create or replace function match_vectors(
|
||||
query_embedding vector(1536),
|
||||
match_count int,
|
||||
filter jsonb default '{}'::jsonb
|
||||
)
|
||||
returns table (
|
||||
id text,
|
||||
similarity float,
|
||||
metadata jsonb
|
||||
)
|
||||
language plpgsql
|
||||
as $$
|
||||
begin
|
||||
return query
|
||||
select
|
||||
id,
|
||||
similarity,
|
||||
metadata
|
||||
from memories
|
||||
where case
|
||||
when filter::text = '{}'::text then true
|
||||
else metadata @> filter
|
||||
end
|
||||
order by embedding <=> query_embedding
|
||||
limit match_count;
|
||||
end;
|
||||
$$;
|
||||
```
|
||||
|
||||
Goto [Supabase](https://supabase.com/dashboard/projects) and run the above SQL migrations inside the SQL Editor.
|
||||
|
||||
### Config
|
||||
|
||||
Here are the parameters available for configuring Supabase:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `connection_string` | PostgreSQL connection string (required) | None |
|
||||
@@ -43,6 +124,17 @@ Here are the parameters available for configuring Supabase:
|
||||
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
|
||||
| `index_method` | Vector index method to use | `auto` |
|
||||
| `index_measure` | Distance measure for similarity search | `cosine_distance` |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collectionName` | Name for the vector collection | `mem0` |
|
||||
| `embeddingModelDims` | Dimensions of the embedding model | `1536` |
|
||||
| `supabaseUrl` | Supabase URL | None |
|
||||
| `supabaseKey` | Supabase key | None |
|
||||
| `tableName` | Name for the vector table | `memories` |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
### Index Methods
|
||||
|
||||
|
||||
Reference in New Issue
Block a user