Added support for google vector search - (matching engine) (#2177)

This commit is contained in:
anchit-nishant
2025-03-05 11:45:47 +05:30
committed by GitHub
parent 7c8628eadc
commit 23dbce4f59
10 changed files with 1382 additions and 269 deletions

View File

@@ -8,8 +8,9 @@ iconType: "solid"
The `config` is defined as an object with two main keys:
- `vector_store`: Specifies the vector database provider and its configuration
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus", "azure_ai_search")
- `config`: A nested object containing provider-specific settings
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus","azure_ai_search", "vertex_ai_vector_search")
- `config`: A nested dictionary containing provider-specific settings
## How to Use Config
@@ -86,6 +87,12 @@ Here's a comprehensive list of all parameters that can be used across different
| `url` | Full URL for the server |
| `api_key` | API key for the server |
| `on_disk` | Enable persistent storage |
| `endpoint_id` | Endpoint ID (vertex_ai_vector_search) |
| `index_id` | Index ID (vertex_ai_vector_search) |
| `deployment_index_id` | Deployment index ID (vertex_ai_vector_search) |
| `project_id` | Project ID (vertex_ai_vector_search) |
| `project_number` | Project number (vertex_ai_vector_search) |
| `vector_search_api_endpoint` | Vector search API endpoint (vertex_ai_vector_search) |
| `connection_string` | PostgreSQL connection string (for Supabase/PGVector) |
| `index_method` | Vector index method (for Supabase) |
| `index_measure` | Distance measure for similarity search (for Supabase) |

View File

@@ -0,0 +1,46 @@
## Google Cloud Vertex AI Vector Search
### Usage
To use Google Cloud Vertex AI Vector Search with `mem0`, you need to configure the `vector_store` in your `mem0` config:
```python
import os
from mem0 import Memory
os.environ["GEMINI_API_KEY"] = = "sk-xx"
config = {
"vector_store": {
"provider": "vertex_ai_vector_search",
"config": {
"endpoint_id": "YOUR_ENDPOINT_ID", # Required: Vector Search endpoint ID
"index_id": "YOUR_INDEX_ID", # Required: Vector Search index ID
"deployment_index_id": "YOUR_DEPLOYMENT_INDEX_ID", # Required: Deployment-specific ID
"project_id": "YOUR_PROJECT_ID", # Required: Google Cloud project ID
"project_number": "YOUR_PROJECT_NUMBER", # Required: Google Cloud project number
"region": "YOUR_REGION", # Optional: Defaults to GOOGLE_CLOUD_REGION
"credentials_path": "path/to/credentials.json", # Optional: Defaults to GOOGLE_APPLICATION_CREDENTIALS
"vector_search_api_endpoint": "YOUR_API_ENDPOINT" # Required for get operations
}
}
}
m = Memory.from_config(config)
m.add("Your text here", user_id="user", metadata={"category": "example"})
```
### Required Parameters
| Parameter | Description | Required |
|-----------|-------------|----------|
| `endpoint_id` | Vector Search endpoint ID | Yes |
| `index_id` | Vector Search index ID | Yes |
| `deployment_index_id` | Deployment-specific index ID | Yes |
| `project_id` | Google Cloud project ID | Yes |
| `project_number` | Google Cloud project number | Yes |
| `vector_search_api_endpoint` | Vector search API endpoint | Yes (for get operations) |
| `region` | Google Cloud region | No (defaults to GOOGLE_CLOUD_REGION) |
| `credentials_path` | Path to service account credentials | No (defaults to GOOGLE_APPLICATION_CREDENTIALS) |

View File

@@ -0,0 +1,29 @@
from typing import Optional
from pydantic import BaseModel, Field
class GoogleMatchingEngineConfig(BaseModel):
project_id: str = Field(description="Google Cloud project ID")
project_number: str = Field(description="Google Cloud project number")
region: str = Field(description="Google Cloud region")
endpoint_id: str = Field(description="Vertex AI Vector Search endpoint ID")
index_id: str = Field(description="Vertex AI Vector Search index ID")
deployment_index_id: str = Field(description="Deployment-specific index ID")
collection_name: Optional[str] = Field(None, description="Collection name, defaults to index_id")
credentials_path: Optional[str] = Field(None, description="Path to service account credentials file")
vector_search_api_endpoint: Optional[str] = Field(None, description="Vector search API endpoint")
model_config = {
"extra": "forbid"
}
def __init__(self, **kwargs):
super().__init__(**kwargs)
if not self.collection_name:
self.collection_name = self.index_id
def model_post_init(self, _context) -> None:
"""Set collection_name to index_id if not provided"""
if self.collection_name is None:
self.collection_name = self.index_id

View File

@@ -69,6 +69,7 @@ class VectorStoreFactory:
"azure_ai_search": "mem0.vector_stores.azure_ai_search.AzureAISearch",
"redis": "mem0.vector_stores.redis.RedisDB",
"elasticsearch": "mem0.vector_stores.elasticsearch.ElasticsearchDB",
"vertex_ai_vector_search": "mem0.vector_stores.vertex_ai_vector_search.GoogleMatchingEngine",
"opensearch": "mem0.vector_stores.opensearch.OpenSearchDB",
"supabase": "mem0.vector_stores.supabase.Supabase",
}

View File

@@ -18,6 +18,7 @@ class VectorStoreConfig(BaseModel):
"azure_ai_search": "AzureAISearchConfig",
"redis": "RedisDBConfig",
"elasticsearch": "ElasticsearchConfig",
"vertex_ai_vector_search": "GoogleMatchingEngineConfig",
"opensearch": "OpenSearchConfig",
"supabase": "SupabaseConfig",
}

View File

@@ -0,0 +1,687 @@
import logging
import traceback
import uuid
from typing import Any, Dict, List, Optional, Tuple
import google.api_core.exceptions
from google.cloud import aiplatform, aiplatform_v1
from google.cloud.aiplatform.matching_engine.matching_engine_index_endpoint import (
Namespace,
)
from google.oauth2 import service_account
from langchain.schema import Document
from pydantic import BaseModel
from mem0.configs.vector_stores.vertex_ai_vector_search import (
GoogleMatchingEngineConfig,
)
from mem0.vector_stores.base import VectorStoreBase
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: Optional[str] # memory id
score: Optional[float] # distance
payload: Optional[Dict] # metadata
class GoogleMatchingEngine(VectorStoreBase):
def __init__(self, **kwargs):
"""Initialize Google Matching Engine client."""
logger.debug("Initializing Google Matching Engine with kwargs: %s", kwargs)
# If collection_name is passed, use it as deployment_index_id if deployment_index_id is not provided
if 'collection_name' in kwargs and 'deployment_index_id' not in kwargs:
kwargs['deployment_index_id'] = kwargs['collection_name']
logger.debug("Using collection_name as deployment_index_id: %s", kwargs['deployment_index_id'])
elif 'deployment_index_id' in kwargs and 'collection_name' not in kwargs:
kwargs['collection_name'] = kwargs['deployment_index_id']
logger.debug("Using deployment_index_id as collection_name: %s", kwargs['collection_name'])
try:
config = GoogleMatchingEngineConfig(**kwargs)
logger.debug("Config created: %s", config.model_dump())
logger.debug("Config collection_name: %s", getattr(config, 'collection_name', None))
except Exception as e:
logger.error("Failed to validate config: %s", str(e))
raise
self.project_id = config.project_id
self.project_number = config.project_number
self.region = config.region
self.endpoint_id = config.endpoint_id
self.index_id = config.index_id # The actual index ID
self.deployment_index_id = config.deployment_index_id # The deployment-specific ID
self.collection_name = config.collection_name
self.vector_search_api_endpoint = config.vector_search_api_endpoint
logger.debug("Using project=%s, location=%s", self.project_id, self.region)
# Initialize Vertex AI with credentials if provided
init_args = {
"project": self.project_id,
"location": self.region,
}
if hasattr(config, 'credentials_path') and config.credentials_path:
logger.debug("Using credentials from: %s", config.credentials_path)
credentials = service_account.Credentials.from_service_account_file(
config.credentials_path
)
init_args["credentials"] = credentials
try:
aiplatform.init(**init_args)
logger.debug("Vertex AI initialized successfully")
except Exception as e:
logger.error("Failed to initialize Vertex AI: %s", str(e))
raise
try:
# Format the index path properly using the configured index_id
index_path = f"projects/{self.project_number}/locations/{self.region}/indexes/{self.index_id}"
logger.debug("Initializing index with path: %s", index_path)
self.index = aiplatform.MatchingEngineIndex(index_name=index_path)
logger.debug("Index initialized successfully")
# Format the endpoint name properly
endpoint_name = self.endpoint_id
logger.debug("Initializing endpoint with name: %s", endpoint_name)
self.index_endpoint = aiplatform.MatchingEngineIndexEndpoint(
index_endpoint_name=endpoint_name
)
logger.debug("Endpoint initialized successfully")
except Exception as e:
logger.error("Failed to initialize Matching Engine components: %s", str(e))
raise ValueError(f"Invalid configuration: {str(e)}")
def _parse_output(self, data: Dict) -> List[OutputData]:
"""
Parse the output data.
Args:
data (Dict): Output data.
Returns:
List[OutputData]: Parsed output data.
"""
results = data.get("nearestNeighbors", {}).get("neighbors", [])
output_data = []
for result in results:
output_data.append(
OutputData(
id=result.get("datapoint").get("datapointId"),
score=result.get("distance"),
payload=result.get("datapoint").get("metadata"),
)
)
return output_data
def _create_restriction(self, key: str, value: Any) -> aiplatform_v1.types.index.IndexDatapoint.Restriction:
"""Create a restriction object for the Matching Engine index.
Args:
key: The namespace/key for the restriction
value: The value to restrict on
Returns:
Restriction object for the index
"""
str_value = str(value) if value is not None else ""
return aiplatform_v1.types.index.IndexDatapoint.Restriction(
namespace=key,
allow_list=[str_value]
)
def _create_datapoint(
self,
vector_id: str,
vector: List[float],
payload: Optional[Dict] = None
) -> aiplatform_v1.types.index.IndexDatapoint:
"""Create a datapoint object for the Matching Engine index.
Args:
vector_id: The ID for the datapoint
vector: The vector to store
payload: Optional metadata to store with the vector
Returns:
IndexDatapoint object
"""
restrictions = []
if payload:
restrictions = [
self._create_restriction(key, value)
for key, value in payload.items()
]
return aiplatform_v1.types.index.IndexDatapoint(
datapoint_id=vector_id,
feature_vector=vector,
restricts=restrictions
)
def insert(
self,
vectors: List[list],
payloads: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
) -> None:
"""Insert vectors into the Matching Engine index.
Args:
vectors: List of vectors to insert
payloads: Optional list of metadata dictionaries
ids: Optional list of IDs for the vectors
Raises:
ValueError: If vectors is empty or lengths don't match
GoogleAPIError: If the API call fails
"""
if not vectors:
raise ValueError("No vectors provided for insertion")
if payloads and len(payloads) != len(vectors):
raise ValueError(f"Number of payloads ({len(payloads)}) does not match number of vectors ({len(vectors)})")
if ids and len(ids) != len(vectors):
raise ValueError(f"Number of ids ({len(ids)}) does not match number of vectors ({len(vectors)})")
logger.debug("Starting insert of %d vectors", len(vectors))
try:
datapoints = [
self._create_datapoint(
vector_id=ids[i] if ids else str(uuid.uuid4()),
vector=vector,
payload=payloads[i] if payloads and i < len(payloads) else None
)
for i, vector in enumerate(vectors)
]
logger.debug("Created %d datapoints", len(datapoints))
self.index.upsert_datapoints(datapoints=datapoints)
logger.debug("Successfully inserted datapoints")
except google.api_core.exceptions.GoogleAPIError as e:
logger.error("Failed to insert vectors: %s", str(e))
raise
except Exception as e:
logger.error("Unexpected error during insert: %s", str(e))
logger.error("Stack trace: %s", traceback.format_exc())
raise
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
"""
Search for similar vectors.
Args:
query (List[float]): Query vector.
limit (int, optional): Number of results to return. Defaults to 5.
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
Returns:
List[OutputData]: Search results (unwrapped)
"""
logger.debug("Starting search")
logger.debug("Query type: %s, length: %d", type(query), len(query))
logger.debug("Limit: %d, Filters: %s", limit, filters)
try:
filter_namespaces = []
if filters:
logger.debug("Processing filters")
for key, value in filters.items():
logger.debug("Processing filter %s=%s (type=%s)", key, value, type(value))
if isinstance(value, (str, int, float)):
logger.debug("Adding simple filter for %s", key)
filter_namespaces.append(
Namespace(key, [str(value)], [])
)
elif isinstance(value, dict):
logger.debug("Adding complex filter for %s", key)
includes = value.get('include', [])
excludes = value.get('exclude', [])
filter_namespaces.append(
Namespace(key, includes, excludes)
)
logger.debug("Final filter_namespaces: %s", filter_namespaces)
response = self.index_endpoint.find_neighbors(
deployed_index_id=self.deployment_index_id,
queries=[query],
num_neighbors=limit,
filter=filter_namespaces if filter_namespaces else None,
return_full_datapoint=True
)
if not response or len(response) == 0 or len(response[0]) == 0:
logger.debug("No results found")
return []
results = []
for neighbor in response[0]:
logger.debug("Processing neighbor - id: %s, distance: %s",
neighbor.id, neighbor.distance)
payload = {}
if hasattr(neighbor, 'restricts'):
logger.debug("Processing restricts")
for restrict in neighbor.restricts:
if (hasattr(restrict, 'name') and
hasattr(restrict, 'allow_tokens') and
restrict.allow_tokens):
logger.debug("Adding %s: %s", restrict.name, restrict.allow_tokens[0])
payload[restrict.name] = restrict.allow_tokens[0]
output_data = OutputData(
id=neighbor.id,
score=neighbor.distance,
payload=payload
)
results.append(output_data)
logger.debug("Returning %d results", len(results))
return results
except Exception as e:
logger.error("Error occurred: %s", str(e))
logger.error("Error type: %s", type(e))
logger.error("Stack trace: %s", traceback.format_exc())
raise
def delete(self, vector_id: Optional[str] = None, ids: Optional[List[str]] = None) -> bool:
"""
Delete vectors from the Matching Engine index.
Args:
vector_id (Optional[str]): Single ID to delete (for backward compatibility)
ids (Optional[List[str]]): List of IDs of vectors to delete
Returns:
bool: True if vectors were deleted successfully or already deleted, False if error
"""
logger.debug("Starting delete, vector_id: %s, ids: %s", vector_id, ids)
try:
# Handle both single vector_id and list of ids
if vector_id:
datapoint_ids = [vector_id]
elif ids:
datapoint_ids = ids
else:
raise ValueError("Either vector_id or ids must be provided")
logger.debug("Deleting ids: %s", datapoint_ids)
try:
self.index.remove_datapoints(datapoint_ids=datapoint_ids)
logger.debug("Delete completed successfully")
return True
except google.api_core.exceptions.NotFound:
# If the datapoint is already deleted, consider it a success
logger.debug("Datapoint already deleted")
return True
except google.api_core.exceptions.PermissionDenied as e:
logger.error("Permission denied: %s", str(e))
return False
except google.api_core.exceptions.InvalidArgument as e:
logger.error("Invalid argument: %s", str(e))
return False
except Exception as e:
logger.error("Error occurred: %s", str(e))
logger.error("Error type: %s", type(e))
logger.error("Stack trace: %s", traceback.format_exc())
return False
def update(
self,
vector_id: str,
vector: Optional[List[float]] = None,
payload: Optional[Dict] = None,
) -> bool:
"""Update a vector and its payload.
Args:
vector_id: ID of the vector to update
vector: Optional new vector values
payload: Optional new metadata payload
Returns:
bool: True if update was successful
Raises:
ValueError: If neither vector nor payload is provided
GoogleAPIError: If the API call fails
"""
logger.debug("Starting update for vector_id: %s", vector_id)
if vector is None and payload is None:
raise ValueError("Either vector or payload must be provided for update")
# First check if the vector exists
try:
existing = self.get(vector_id)
if existing is None:
logger.error("Vector ID not found: %s", vector_id)
return False
datapoint = self._create_datapoint(
vector_id=vector_id,
vector=vector if vector is not None else [],
payload=payload
)
logger.debug("Upserting datapoint: %s", datapoint)
self.index.upsert_datapoints(datapoints=[datapoint])
logger.debug("Update completed successfully")
return True
except google.api_core.exceptions.GoogleAPIError as e:
logger.error("API error during update: %s", str(e))
return False
except Exception as e:
logger.error("Unexpected error during update: %s", str(e))
logger.error("Stack trace: %s", traceback.format_exc())
raise
def get(self, vector_id: str) -> Optional[OutputData]:
"""
Retrieve a vector by ID.
Args:
vector_id (str): ID of the vector to retrieve.
Returns:
Optional[OutputData]: Retrieved vector or None if not found.
"""
logger.debug("Starting get for vector_id: %s", vector_id)
try:
if not self.vector_search_api_endpoint:
raise ValueError("vector_search_api_endpoint is required for get operation")
vector_search_client = aiplatform_v1.MatchServiceClient(
client_options={
"api_endpoint": self.vector_search_api_endpoint
},
)
datapoint = aiplatform_v1.IndexDatapoint(
datapoint_id=vector_id
)
query = aiplatform_v1.FindNeighborsRequest.Query(
datapoint=datapoint,
neighbor_count=1
)
request = aiplatform_v1.FindNeighborsRequest(
index_endpoint=f"projects/{self.project_number}/locations/{self.region}/indexEndpoints/{self.endpoint_id}",
deployed_index_id=self.deployment_index_id,
queries=[query],
return_full_datapoint=True,
)
try:
response = vector_search_client.find_neighbors(request)
logger.debug("Got response")
if response and response.nearest_neighbors:
nearest = response.nearest_neighbors[0]
if nearest.neighbors:
neighbor = nearest.neighbors[0]
payload = {}
if hasattr(neighbor.datapoint, 'restricts'):
for restrict in neighbor.datapoint.restricts:
if restrict.allow_list:
payload[restrict.namespace] = restrict.allow_list[0]
return OutputData(
id=neighbor.datapoint.datapoint_id,
score=neighbor.distance,
payload=payload
)
logger.debug("No results found")
return None
except google.api_core.exceptions.NotFound:
logger.debug("Datapoint not found")
return None
except google.api_core.exceptions.PermissionDenied as e:
logger.error("Permission denied: %s", str(e))
return None
except Exception as e:
logger.error("Error occurred: %s", str(e))
logger.error("Error type: %s", type(e))
logger.error("Stack trace: %s", traceback.format_exc())
raise
def list_cols(self) -> List[str]:
"""
List all collections (indexes).
Returns:
List[str]: List of collection names.
"""
return [self.deployment_index_id]
def delete_col(self):
"""
Delete a collection (index).
Note: This operation is not supported through the API.
"""
logger.warning("Delete collection operation is not supported for Google Matching Engine")
pass
def col_info(self) -> Dict:
"""
Get information about a collection (index).
Returns:
Dict: Collection information.
"""
return {
"index_id": self.index_id,
"endpoint_id": self.endpoint_id,
"project_id": self.project_id,
"region": self.region
}
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]:
"""List vectors matching the given filters.
Args:
filters: Optional filters to apply
limit: Optional maximum number of results to return
Returns:
List[List[OutputData]]: List of matching vectors wrapped in an extra array
to match the interface
"""
logger.debug("Starting list operation")
logger.debug("Filters: %s", filters)
logger.debug("Limit: %s", limit)
try:
# Use a zero vector for the search
dimension = 768 # This should be configurable based on the model
zero_vector = [0.0] * dimension
# Use a large limit if none specified
search_limit = limit if limit is not None else 10000
results = self.search(
query=zero_vector,
limit=search_limit,
filters=filters
)
logger.debug("Found %d results", len(results))
return [results] # Wrap in extra array to match interface
except Exception as e:
logger.error("Error in list operation: %s", str(e))
logger.error("Stack trace: %s", traceback.format_exc())
raise
def create_col(self, name=None, vector_size=None, distance=None):
"""
Create a new collection. For Google Matching Engine, collections (indexes)
are created through the Google Cloud Console or API separately.
This method is a no-op since indexes are pre-created.
Args:
name: Ignored for Google Matching Engine
vector_size: Ignored for Google Matching Engine
distance: Ignored for Google Matching Engine
"""
# Google Matching Engine indexes are created through Google Cloud Console
# This method is included only to satisfy the abstract base class
pass
def add(self, text: str, metadata: Optional[Dict] = None, user_id: Optional[str] = None) -> str:
logger.debug("Starting add operation")
logger.debug("Text: %s", text)
logger.debug("Metadata: %s", metadata)
logger.debug("User ID: %s", user_id)
try:
# Generate a unique ID for this entry
vector_id = str(uuid.uuid4())
# Create the payload with all necessary fields
payload = {
"data": text, # Store the text in the data field
"user_id": user_id,
**(metadata or {})
}
# Get the embedding
vector = self.embedder.embed_query(text)
# Insert using the insert method
self.insert(
vectors=[vector],
payloads=[payload],
ids=[vector_id]
)
return vector_id
except Exception as e:
logger.error("Error occurred: %s", str(e))
raise
def add_texts(
self,
texts: List[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
) -> List[str]:
"""Add texts to the vector store.
Args:
texts: List of texts to add
metadatas: Optional list of metadata dicts
ids: Optional list of IDs to use
Returns:
List[str]: List of IDs of the added texts
Raises:
ValueError: If texts is empty or lengths don't match
"""
if not texts:
raise ValueError("No texts provided")
if metadatas and len(metadatas) != len(texts):
raise ValueError(f"Number of metadata items ({len(metadatas)}) does not match number of texts ({len(texts)})")
if ids and len(ids) != len(texts):
raise ValueError(f"Number of ids ({len(ids)}) does not match number of texts ({len(texts)})")
logger.debug("Starting add_texts operation")
logger.debug("Number of texts: %d", len(texts))
logger.debug("Has metadatas: %s", metadatas is not None)
logger.debug("Has ids: %s", ids is not None)
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
try:
# Get embeddings
embeddings = self.embedder.embed_documents(texts)
# Add to store
self.insert(
vectors=embeddings,
payloads=metadatas if metadatas else [{}] * len(texts),
ids=ids
)
return ids
except Exception as e:
logger.error("Error in add_texts: %s", str(e))
logger.error("Stack trace: %s", traceback.format_exc())
raise
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Any,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> "GoogleMatchingEngine":
"""Create an instance from texts."""
logger.debug("Creating instance from texts")
store = cls(**kwargs)
store.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return store
def similarity_search_with_score(
self,
query: str,
k: int = 5,
filter: Optional[Dict] = None,
) -> List[Tuple[Document, float]]:
"""Return documents most similar to query with scores."""
logger.debug("Starting similarity search with score")
logger.debug("Query: %s", query)
logger.debug("k: %d", k)
logger.debug("Filter: %s", filter)
embedding = self.embedder.embed_query(query)
results = self.search(query=embedding, limit=k, filters=filter)
docs_and_scores = [
(
Document(
page_content=result.payload.get("text", ""),
metadata=result.payload
),
result.score
)
for result in results
]
logger.debug("Found %d results", len(docs_and_scores))
return docs_and_scores
def similarity_search(
self,
query: str,
k: int = 5,
filter: Optional[Dict] = None,
) -> List[Document]:
"""Return documents most similar to query."""
logger.debug("Starting similarity search")
docs_and_scores = self.similarity_search_with_score(query, k, filter)
return [doc for doc, _ in docs_and_scores]

734
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -25,6 +25,7 @@ sqlalchemy = "^2.0.31"
langchain-community = "^0.3.1"
neo4j = "^5.23.1"
rank-bm25 = "^0.2.2"
psycopg2-binary = "^2.9.10"
[tool.poetry.extras]
graph = ["langchain-community", "neo4j", "rank-bm25"]

View File

@@ -0,0 +1,139 @@
from unittest.mock import Mock, patch
import pytest
from google.api_core import exceptions
from google.cloud.aiplatform.matching_engine.matching_engine_index_endpoint import (
Namespace,
)
from mem0.configs.vector_stores.vertex_ai_vector_search import (
GoogleMatchingEngineConfig,
)
from mem0.vector_stores.vertex_ai_vector_search import GoogleMatchingEngine
@pytest.fixture
def mock_vertex_ai():
with patch('google.cloud.aiplatform.MatchingEngineIndex') as mock_index, \
patch('google.cloud.aiplatform.MatchingEngineIndexEndpoint') as mock_endpoint, \
patch('google.cloud.aiplatform.init') as mock_init:
mock_index_instance = Mock()
mock_endpoint_instance = Mock()
yield {
'index': mock_index_instance,
'endpoint': mock_endpoint_instance,
'init': mock_init,
'index_class': mock_index,
'endpoint_class': mock_endpoint
}
@pytest.fixture
def config():
return GoogleMatchingEngineConfig(
project_id='test-project',
project_number='123456789',
region='us-central1',
endpoint_id='test-endpoint',
index_id='test-index',
deployment_index_id='test-deployment',
collection_name='test-collection',
vector_search_api_endpoint='test.vertexai.goog'
)
@pytest.fixture
def vector_store(config, mock_vertex_ai):
mock_vertex_ai['index_class'].return_value = mock_vertex_ai['index']
mock_vertex_ai['endpoint_class'].return_value = mock_vertex_ai['endpoint']
return GoogleMatchingEngine(**config.model_dump())
def test_initialization(vector_store, mock_vertex_ai, config):
"""Test proper initialization of GoogleMatchingEngine"""
mock_vertex_ai['init'].assert_called_once_with(
project=config.project_id,
location=config.region
)
expected_index_path = f"projects/{config.project_number}/locations/{config.region}/indexes/{config.index_id}"
mock_vertex_ai['index_class'].assert_called_once_with(index_name=expected_index_path)
def test_insert_vectors(vector_store, mock_vertex_ai):
"""Test inserting vectors with payloads"""
vectors = [[0.1, 0.2, 0.3]]
payloads = [{"name": "test", "user_id": "user1"}]
ids = ["test-id"]
vector_store.insert(vectors=vectors, payloads=payloads, ids=ids)
mock_vertex_ai['index'].upsert_datapoints.assert_called_once()
call_args = mock_vertex_ai['index'].upsert_datapoints.call_args[1]
assert len(call_args['datapoints']) == 1
datapoint_str = str(call_args['datapoints'][0])
assert "test-id" in datapoint_str
assert "0.1" in datapoint_str and "0.2" in datapoint_str and "0.3" in datapoint_str
def test_search_vectors(vector_store, mock_vertex_ai):
"""Test searching vectors with filters"""
query = [0.1, 0.2, 0.3]
filters = {"user_id": "test_user"}
mock_datapoint = Mock()
mock_datapoint.datapoint_id = "test-id"
mock_datapoint.feature_vector = query
mock_restrict = Mock()
mock_restrict.namespace = "user_id"
mock_restrict.allow_list = ["test_user"]
mock_restrict.name = "user_id"
mock_restrict.allow_tokens = ["test_user"]
mock_datapoint.restricts = [mock_restrict]
mock_neighbor = Mock()
mock_neighbor.id = "test-id"
mock_neighbor.distance = 0.1
mock_neighbor.datapoint = mock_datapoint
mock_neighbor.restricts = [mock_restrict]
mock_vertex_ai['endpoint'].find_neighbors.return_value = [[mock_neighbor]]
results = vector_store.search(query=query, filters=filters, limit=1)
mock_vertex_ai['endpoint'].find_neighbors.assert_called_once_with(
deployed_index_id=vector_store.deployment_index_id,
queries=[query],
num_neighbors=1,
filter=[Namespace("user_id", ["test_user"], [])],
return_full_datapoint=True
)
assert len(results) == 1
assert results[0].id == "test-id"
assert results[0].score == 0.1
assert results[0].payload == {"user_id": "test_user"}
def test_delete(vector_store, mock_vertex_ai):
"""Test deleting vectors"""
vector_id = "test-id"
remove_mock = Mock()
with patch.object(GoogleMatchingEngine, 'delete', wraps=vector_store.delete) as delete_spy:
with patch.object(vector_store.index, 'remove_datapoints', remove_mock):
vector_store.delete(ids=[vector_id])
delete_spy.assert_called_once_with(ids=[vector_id])
remove_mock.assert_called_once_with(datapoint_ids=[vector_id])
def test_error_handling(vector_store, mock_vertex_ai):
"""Test error handling during operations"""
mock_vertex_ai['index'].upsert_datapoints.side_effect = exceptions.InvalidArgument("Invalid request")
with pytest.raises(Exception) as exc_info:
vector_store.insert(
vectors=[[0.1, 0.2, 0.3]],
payloads=[{"name": "test"}],
ids=["test-id"]
)
assert isinstance(exc_info.value, exceptions.InvalidArgument)
assert "Invalid request" in str(exc_info.value)