From 1dbe7daac1db1946fd11bffb13da083c8b9d6157 Mon Sep 17 00:00:00 2001 From: Taranjeet Singh Date: Thu, 10 Aug 2023 21:13:52 -0700 Subject: [PATCH] fix: Update embedding field name for Elastiscearch mapping (#425) --- embedchain/vectordb/elasticsearch_db.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/embedchain/vectordb/elasticsearch_db.py b/embedchain/vectordb/elasticsearch_db.py index 4371237e..4c767b18 100644 --- a/embedchain/vectordb/elasticsearch_db.py +++ b/embedchain/vectordb/elasticsearch_db.py @@ -44,7 +44,7 @@ class ElasticsearchDB(BaseVectorDB): "mappings": { "properties": { "text": {"type": "text"}, - "text_vector": {"type": "dense_vector", "index": False, "dims": self.vector_dim}, + "embeddings": {"type": "dense_vector", "index": False, "dims": self.vector_dim}, } } } @@ -84,12 +84,12 @@ class ElasticsearchDB(BaseVectorDB): """ docs = [] embeddings = self.embedding_fn(documents) - for id, text, metadata, text_vector in zip(ids, documents, metadatas, embeddings): + for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings): docs.append( { "_index": self.es_index, "_id": id, - "_source": {"text": text, "metadata": metadata, "text_vector": text_vector}, + "_source": {"text": text, "metadata": metadata, "embeddings": embeddings}, } ) bulk(self.client, docs) @@ -109,7 +109,7 @@ class ElasticsearchDB(BaseVectorDB): "script_score": { "query": {"bool": {"must": [{"exists": {"field": "text"}}]}}, "script": { - "source": "cosineSimilarity(params.input_query_vector, 'text_vector') + 1.0", + "source": "cosineSimilarity(params.input_query_vector, 'embeddings') + 1.0", "params": {"input_query_vector": query_vector}, }, }