[Feature] Add support for Google Gemini (#1009)

This commit is contained in:
Deven Patel
2023-12-15 06:10:55 +05:30
committed by GitHub
parent c0ee680546
commit 151746beec
9 changed files with 211 additions and 14 deletions

View File

@@ -18,6 +18,7 @@ class LlmFactory:
"llama2": "embedchain.llm.llama2.Llama2Llm",
"openai": "embedchain.llm.openai.OpenAILlm",
"vertexai": "embedchain.llm.vertex_ai.VertexAILlm",
"google": "embedchain.llm.google.GoogleLlm",
}
provider_to_config_class = {
"embedchain": "embedchain.config.llm.base.BaseLlmConfig",

View File

@@ -217,7 +217,6 @@ class BaseLlm(JSONSerializable):
return prompt
answer = self.get_answer_from_llm(prompt)
if isinstance(answer, str):
logging.info(f"Answer: {answer}")
return answer

64
embedchain/llm/google.py Normal file
View File

@@ -0,0 +1,64 @@
import importlib
import logging
import os
from typing import Optional
import google.generativeai as genai
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class GoogleLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
if "GOOGLE_API_KEY" not in os.environ:
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
try:
importlib.import_module("google.generativeai")
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for GoogleLlm are not installed."
'Please install with `pip install --upgrade "embedchain[google]"`'
) from None
super().__init__(config)
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
def get_llm_model_answer(self, prompt):
if self.config.system_prompt:
raise ValueError("GoogleLlm does not support `system_prompt`")
return GoogleLlm._get_answer(prompt, self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig):
model_name = config.model or "gemini-pro"
logging.info(f"Using Google LLM model: {model_name}")
model = genai.GenerativeModel(model_name=model_name)
generation_config_params = {
"candidate_count": 1,
"max_output_tokens": config.max_tokens,
"temperature": config.temperature or 0.5,
}
if config.top_p >= 0.0 and config.top_p <= 1.0:
generation_config_params["top_p"] = config.top_p
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
generation_config = genai.types.GenerationConfig(**generation_config_params)
response = model.generate_content(
prompt,
generation_config=generation_config,
stream=config.stream,
)
if config.stream:
for chunk in response:
yield chunk.text
else:
return response.text

View File

@@ -387,6 +387,7 @@ def validate_config(config_data):
"jina",
"llama2",
"vertexai",
"google",
),
Optional("config"): {
Optional("model"): str,