fix: elastic search (#600)

This commit is contained in:
cachho
2023-09-13 19:58:18 +02:00
committed by GitHub
parent 79efa51941
commit 119ec5e405
11 changed files with 135 additions and 55 deletions

View File

@@ -1,3 +1,4 @@
import os
from typing import Dict, List, Optional, Union
from embedchain.config.vectordbs.BaseVectorDbConfig import BaseVectorDbConfig
@@ -26,7 +27,20 @@ class ElasticsearchDBConfig(BaseVectorDbConfig):
:type ES_EXTRA_PARAMS: Dict[str, Any], optional
"""
# self, es_url: Union[str, List[str]] = None, **ES_EXTRA_PARAMS: Dict[str, any]):
self.ES_URL = es_url
self.ES_URL = es_url or os.environ.get("ELASTICSEARCH_URL")
if not self.ES_URL:
raise AttributeError(
"Elasticsearch needs a URL attribute, "
"this can either be passed to `ElasticsearchDBConfig` or as `ELASTICSEARCH_URL` in `.env`"
)
self.ES_EXTRA_PARAMS = ES_EXTRA_PARAMS
# Load API key from .env if it's not explicitly passed.
# Can only set one of 'api_key', 'basic_auth', and 'bearer_auth'
if (
not self.ES_EXTRA_PARAMS.get("api_key")
and not self.ES_EXTRA_PARAMS.get("basic_auth")
and not self.ES_EXTRA_PARAMS.get("bearer_auth")
and not self.ES_EXTRA_PARAMS.get("http_auth")
):
self.ES_EXTRA_PARAMS["api_key"] = os.environ.get("ELASTICSEARCH_API_KEY")
super().__init__(collection_name=collection_name, dir=dir)

View File

@@ -51,6 +51,8 @@ class BaseEmbedder:
:param vector_dimension: vector dimension size
:type vector_dimension: int
"""
if not isinstance(vector_dimension, int):
raise TypeError("vector dimension must be int")
self.vector_dimension = vector_dimension
@staticmethod

View File

@@ -4,7 +4,7 @@ from chromadb.utils import embedding_functions
from embedchain.config import BaseEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from embedchain.models import EmbeddingFunctions
from embedchain.models import VectorDimensions
class GPT4AllEmbedder(BaseEmbedder):
@@ -17,5 +17,5 @@ class GPT4AllEmbedder(BaseEmbedder):
embedding_fn = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=self.config.model)
self.set_embedding_fn(embedding_fn=embedding_fn)
vector_dimension = EmbeddingFunctions.GPT4ALL.value
vector_dimension = VectorDimensions.GPT4ALL.value
self.set_vector_dimension(vector_dimension=vector_dimension)

View File

@@ -4,7 +4,7 @@ from langchain.embeddings import HuggingFaceEmbeddings
from embedchain.config import BaseEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from embedchain.models import EmbeddingFunctions
from embedchain.models import VectorDimensions
class HuggingFaceEmbedder(BaseEmbedder):
@@ -15,5 +15,5 @@ class HuggingFaceEmbedder(BaseEmbedder):
embedding_fn = BaseEmbedder._langchain_default_concept(embeddings)
self.set_embedding_fn(embedding_fn=embedding_fn)
vector_dimension = EmbeddingFunctions.HUGGING_FACE.value
vector_dimension = VectorDimensions.HUGGING_FACE.value
self.set_vector_dimension(vector_dimension=vector_dimension)

View File

@@ -5,7 +5,7 @@ from langchain.embeddings import OpenAIEmbeddings
from embedchain.config import BaseEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from embedchain.models import EmbeddingFunctions
from embedchain.models import VectorDimensions
try:
from chromadb.utils import embedding_functions
@@ -37,4 +37,4 @@ class OpenAiEmbedder(BaseEmbedder):
)
self.set_embedding_fn(embedding_fn=embedding_fn)
self.set_vector_dimension(vector_dimension=EmbeddingFunctions.OPENAI.value)
self.set_vector_dimension(vector_dimension=VectorDimensions.OPENAI.value)

View File

@@ -4,7 +4,7 @@ from langchain.embeddings import VertexAIEmbeddings
from embedchain.config import BaseEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from embedchain.models import EmbeddingFunctions
from embedchain.models import VectorDimensions
class VertexAiEmbedder(BaseEmbedder):
@@ -15,5 +15,5 @@ class VertexAiEmbedder(BaseEmbedder):
embedding_fn = BaseEmbedder._langchain_default_concept(embeddings)
self.set_embedding_fn(embedding_fn=embedding_fn)
vector_dimension = EmbeddingFunctions.VERTEX_AI.value
vector_dimension = VectorDimensions.VERTEX_AI.value
self.set_vector_dimension(vector_dimension=vector_dimension)

View File

@@ -87,7 +87,7 @@ class ChromaDB(BaseVectorDB):
)
return self.collection
def get(self, ids=None, where=None, limit=None):
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
"""
Get existing doc ids present in vector database
@@ -95,6 +95,8 @@ class ChromaDB(BaseVectorDB):
:type ids: List[str]
:param where: Optional. to filter data
:type where: Dict[str, Any]
:param limit: Optional. maximum number of documents
:type limit: Optional[int]
:return: Existing documents.
:rtype: List[str]
"""
@@ -180,6 +182,8 @@ class ChromaDB(BaseVectorDB):
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
self._get_or_create_collection(self.config.collection_name)

View File

@@ -1,3 +1,4 @@
import logging
from typing import Dict, List, Optional, Set
try:
@@ -34,9 +35,15 @@ class ElasticsearchDB(BaseVectorDB):
:raises ValueError: No config provided
"""
if config is None and es_config is None:
raise ValueError("ElasticsearchDBConfig is required")
self.config = config or es_config
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
self.config = ElasticsearchDBConfig()
else:
if not isinstance(config, ElasticsearchDBConfig):
raise TypeError(
"config is not a `ElasticsearchDBConfig` instance. "
"Please make sure the type is right and that you are passing an instance."
)
self.config = config or es_config
self.client = Elasticsearch(self.config.ES_URL, **self.config.ES_EXTRA_PARAMS)
# Call parent init here because embedder is needed
super().__init__(config=self.config)
@@ -45,6 +52,7 @@ class ElasticsearchDB(BaseVectorDB):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
"""
logging.info(self.client.info())
index_settings = {
"mappings": {
"properties": {
@@ -66,7 +74,9 @@ class ElasticsearchDB(BaseVectorDB):
def _get_or_create_collection(self, name):
"""Note: nothing to return here. Discuss later"""
def get(self, ids: List[str], where: Dict[str, any]) -> Set[str]:
def get(
self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None
) -> Set[str]:
"""
Get existing doc ids present in vector database
@@ -77,14 +87,18 @@ class ElasticsearchDB(BaseVectorDB):
:return: ids
:rtype: Set[str]
"""
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
if ids:
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
else:
query = {"bool": {"must": []}}
if "app_id" in where:
app_id = where["app_id"]
query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
response = self.client.search(index=self.es_index, query=query, _source=False)
response = self.client.search(index=self._get_index(), query=query, _source=False, size=limit)
docs = response["hits"]["hits"]
ids = [doc["_id"] for doc in docs]
return set(ids)
return {"ids": set(ids)}
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
"""add data in vector database
@@ -150,6 +164,8 @@ class ElasticsearchDB(BaseVectorDB):
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
def count(self) -> int:
@@ -181,4 +197,4 @@ class ElasticsearchDB(BaseVectorDB):
"""
# NOTE: The method is preferred to an attribute, because if collection name changes,
# it's always up-to-date.
return f"{self.config.collection_name}_{self.embedder.vector_dimension}"
return f"{self.config.collection_name}_{self.embedder.vector_dimension}".lower()