refactor: app design concept (#305)

This commit is contained in:
cachho
2023-07-18 01:20:26 +02:00
committed by GitHub
parent 7ed46260b3
commit 0ea278f633
16 changed files with 378 additions and 240 deletions

View File

@@ -1,15 +1,13 @@
import logging
import os
from string import Template
import openai
from chromadb.utils import embedding_functions
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.memory import ConversationBufferMemory
from embedchain.config import AddConfig, ChatConfig, InitConfig, QueryConfig
from embedchain.config.QueryConfig import DOCS_SITE_PROMPT_TEMPLATE, DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY
from embedchain.config import AddConfig, ChatConfig, QueryConfig
from embedchain.config.apps.BaseAppConfig import BaseAppConfig
from embedchain.config.QueryConfig import DOCS_SITE_PROMPT_TEMPLATE
from embedchain.data_formatter import DataFormatter
gpt4all_model = None
@@ -23,7 +21,7 @@ memory = ConversationBufferMemory()
class EmbedChain:
def __init__(self, config: InitConfig):
def __init__(self, config: BaseAppConfig):
"""
Initializes the EmbedChain instance, sets up a vector DB client and
creates a collection.
@@ -139,7 +137,10 @@ class EmbedChain:
)
]
def get_llm_model_answer(self, prompt):
def get_llm_model_answer(self):
"""
Usually implemented by child class
"""
raise NotImplementedError
def retrieve_from_database(self, input_query, config: QueryConfig):
@@ -329,152 +330,3 @@ class EmbedChain:
`App` has to be reinitialized after using this method.
"""
self.db_client.reset()
class App(EmbedChain):
"""
The EmbedChain app.
Has two functions: add and query.
adds(data_type, url): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
dry_run(query): test your prompt without consuming tokens.
"""
def __init__(self, config: InitConfig = None):
"""
:param config: InitConfig instance to load as configuration. Optional.
"""
if config is None:
config = InitConfig()
if not config.ef:
config._set_embedding_function_to_default()
if not config.db:
config._set_db_to_default()
super().__init__(config)
def get_llm_model_answer(self, prompt, config: ChatConfig):
messages = []
messages.append({"role": "user", "content": prompt})
response = openai.ChatCompletion.create(
model=config.model,
messages=messages,
temperature=config.temperature,
max_tokens=config.max_tokens,
top_p=config.top_p,
stream=config.stream,
)
if config.stream:
return self._stream_llm_model_response(response)
else:
return response["choices"][0]["message"]["content"]
def _stream_llm_model_response(self, response):
"""
This is a generator for streaming response from the OpenAI completions API
"""
for line in response:
chunk = line["choices"][0].get("delta", {}).get("content", "")
yield chunk
class OpenSourceApp(EmbedChain):
"""
The OpenSource app.
Same as App, but uses an open source embedding model and LLM.
Has two function: add and query.
adds(data_type, url): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
"""
def __init__(self, config: InitConfig = None):
"""
:param config: InitConfig instance to load as configuration. Optional.
`ef` defaults to open source.
"""
print("Loading open source embedding model. This may take some time...") # noqa:E501
if not config:
config = InitConfig()
if not config.ef:
config._set_embedding_function(
embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
)
if not config.db:
config._set_db_to_default()
print("Successfully loaded open source embedding model.")
super().__init__(config)
def get_llm_model_answer(self, prompt, config: ChatConfig):
from gpt4all import GPT4All
global gpt4all_model
if gpt4all_model is None:
gpt4all_model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
response = gpt4all_model.generate(prompt=prompt, streaming=config.stream)
return response
class EmbedChainPersonApp:
"""
Base class to create a person bot.
This bot behaves and speaks like a person.
:param person: name of the person, better if its a well known person.
:param config: InitConfig instance to load as configuration.
"""
def __init__(self, person, config: InitConfig = None):
self.person = person
self.person_prompt = f"You are {person}. Whatever you say, you will always say in {person} style." # noqa:E501
if config is None:
config = InitConfig()
super().__init__(config)
class PersonApp(EmbedChainPersonApp, App):
"""
The Person app.
Extends functionality from EmbedChainPersonApp and App
"""
def query(self, input_query, config: QueryConfig = None):
self.template = Template(self.person_prompt + " " + DEFAULT_PROMPT)
query_config = QueryConfig(
template=self.template,
)
return super().query(input_query, query_config)
def chat(self, input_query, config: ChatConfig = None):
self.template = Template(self.person_prompt + " " + DEFAULT_PROMPT_WITH_HISTORY)
chat_config = ChatConfig(
template=self.template,
)
return super().chat(input_query, chat_config)
class PersonOpenSourceApp(EmbedChainPersonApp, OpenSourceApp):
"""
The Person app.
Extends functionality from EmbedChainPersonApp and OpenSourceApp
"""
def query(self, input_query, config: QueryConfig = None):
query_config = QueryConfig(
template=self.template,
)
return super().query(input_query, query_config)
def chat(self, input_query, config: ChatConfig = None):
chat_config = ChatConfig(
template=self.template,
)
return super().chat(input_query, chat_config)