@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from embedchain.config import ZillizDBConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -88,14 +88,14 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
self.collection.create_index("embeddings", index)
|
||||
return self.collection
|
||||
|
||||
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
|
||||
def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
|
||||
:param ids: list of doc ids to check for existence
|
||||
:type ids: List[str]
|
||||
:type ids: list[str]
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, Any]
|
||||
:type where: dict[str, Any]
|
||||
:param limit: Optional. maximum number of documents
|
||||
:type limit: Optional[int]
|
||||
:return: Existing documents.
|
||||
@@ -115,11 +115,11 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
|
||||
def add(
|
||||
self,
|
||||
embeddings: List[List[float]],
|
||||
documents: List[str],
|
||||
metadatas: List[object],
|
||||
ids: List[str],
|
||||
**kwargs: Optional[Dict[str, any]],
|
||||
embeddings: list[list[float]],
|
||||
documents: list[str],
|
||||
metadatas: list[object],
|
||||
ids: list[str],
|
||||
**kwargs: Optional[dict[str, any]],
|
||||
):
|
||||
"""Add to database"""
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
@@ -134,17 +134,17 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
|
||||
def query(
|
||||
self,
|
||||
input_query: List[str],
|
||||
input_query: list[str],
|
||||
n_results: int,
|
||||
where: Dict[str, any],
|
||||
where: dict[str, any],
|
||||
citations: bool = False,
|
||||
**kwargs: Optional[Dict[str, Any]],
|
||||
) -> Union[List[Tuple[str, Dict]], List[str]]:
|
||||
**kwargs: Optional[dict[str, Any]],
|
||||
) -> Union[list[tuple[str, dict]], list[str]]:
|
||||
"""
|
||||
Query contents from vector database based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:type input_query: list[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: to filter data
|
||||
@@ -154,7 +154,7 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
:type citations: bool, default is False.
|
||||
:return: The content of the document that matched your query,
|
||||
along with url of the source and doc_id (if citations flag is true)
|
||||
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
|
||||
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
|
||||
"""
|
||||
|
||||
if self.collection.is_empty:
|
||||
@@ -200,7 +200,7 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
"""
|
||||
return self.collection.num_entities
|
||||
|
||||
def reset(self, collection_names: List[str] = None):
|
||||
def reset(self, collection_names: list[str] = None):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user