#1128 | Remove deprecated type hints from typing module (#1131)

This commit is contained in:
Sandra Serrano
2024-01-09 18:35:24 +01:00
committed by GitHub
parent c9df7a2020
commit 0de9491c61
41 changed files with 272 additions and 267 deletions

View File

@@ -1,6 +1,6 @@
import logging
import time
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Optional, Union
from tqdm import tqdm
@@ -78,17 +78,17 @@ class OpenSearchDB(BaseVectorDB):
"""Note: nothing to return here. Discuss later"""
def get(
self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None
) -> Set[str]:
self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None
) -> set[str]:
"""
Get existing doc ids present in vector database
:param ids: _list of doc ids to check for existence
:type ids: List[str]
:type ids: list[str]
:param where: to filter data
:type where: Dict[str, any]
:type where: dict[str, any]
:return: ids
:type: Set[str]
:type: set[str]
"""
query = {}
if ids:
@@ -116,19 +116,19 @@ class OpenSearchDB(BaseVectorDB):
def add(
self,
embeddings: List[List[str]],
documents: List[str],
metadatas: List[object],
ids: List[str],
**kwargs: Optional[Dict[str, any]],
embeddings: list[list[str]],
documents: list[str],
metadatas: list[object],
ids: list[str],
**kwargs: Optional[dict[str, any]],
):
"""Add data in vector database.
Args:
embeddings (List[List[str]]): List of embeddings to add.
documents (List[str]): List of texts to add.
metadatas (List[object]): List of metadata associated with docs.
ids (List[str]): IDs of docs.
embeddings (list[list[str]]): list of embeddings to add.
documents (list[str]): list of texts to add.
metadatas (list[object]): list of metadata associated with docs.
ids (list[str]): IDs of docs.
"""
for batch_start in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in opensearch"):
batch_end = batch_start + self.BATCH_SIZE
@@ -156,26 +156,26 @@ class OpenSearchDB(BaseVectorDB):
def query(
self,
input_query: List[str],
input_query: list[str],
n_results: int,
where: Dict[str, any],
where: dict[str, any],
citations: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> Union[List[Tuple[str, Dict]], List[str]]:
**kwargs: Optional[dict[str, Any]],
) -> Union[list[tuple[str, dict]], list[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:type input_query: list[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: Optional. to filter data
:type where: Dict[str, any]
:type where: dict[str, any]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
"""
embeddings = OpenAIEmbeddings()
docsearch = OpenSearchVectorSearch(