#1128 | Remove deprecated type hints from typing module (#1131)

This commit is contained in:
Sandra Serrano
2024-01-09 18:35:24 +01:00
committed by GitHub
parent c9df7a2020
commit 0de9491c61
41 changed files with 272 additions and 267 deletions

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Optional, Union
try:
from elasticsearch import Elasticsearch
@@ -84,14 +84,14 @@ class ElasticsearchDB(BaseVectorDB):
def _get_or_create_collection(self, name):
"""Note: nothing to return here. Discuss later"""
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
"""
Get existing doc ids present in vector database
:param ids: _list of doc ids to check for existence
:type ids: List[str]
:type ids: list[str]
:param where: to filter data
:type where: Dict[str, any]
:type where: dict[str, any]
:return: ids
:rtype: Set[str]
"""
@@ -110,22 +110,22 @@ class ElasticsearchDB(BaseVectorDB):
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
**kwargs: Optional[Dict[str, any]],
embeddings: list[list[float]],
documents: list[str],
metadatas: list[object],
ids: list[str],
**kwargs: Optional[dict[str, any]],
) -> Any:
"""
add data in vector database
:param embeddings: list of embeddings to add
:type embeddings: List[List[str]]
:type embeddings: list[list[str]]
:param documents: list of texts to add
:type documents: List[str]
:type documents: list[str]
:param metadatas: list of metadata associated with docs
:type metadatas: List[object]
:type metadatas: list[object]
:param ids: ids of docs
:type ids: List[str]
:type ids: list[str]
"""
embeddings = self.embedder.embedding_fn(documents)
@@ -154,27 +154,27 @@ class ElasticsearchDB(BaseVectorDB):
def query(
self,
input_query: List[str],
input_query: list[str],
n_results: int,
where: Dict[str, any],
where: dict[str, any],
citations: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> Union[List[Tuple[str, Dict]], List[str]]:
**kwargs: Optional[dict[str, Any]],
) -> Union[list[tuple[str, dict]], list[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:type input_query: list[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: Optional. to filter data
:type where: Dict[str, any]
:type where: dict[str, any]
:return: The context of the document that matched your query, url of the source, doc_id
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
"""
input_query_vector = self.embedder.embedding_fn(input_query)
query_vector = input_query_vector[0]