@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from chromadb import Collection, QueryResult
|
||||
from langchain.docstore.document import Document
|
||||
@@ -76,7 +76,7 @@ class ChromaDB(BaseVectorDB):
|
||||
return self.client
|
||||
|
||||
@staticmethod
|
||||
def _generate_where_clause(where: Dict[str, any]) -> Dict[str, any]:
|
||||
def _generate_where_clause(where: dict[str, any]) -> dict[str, any]:
|
||||
# If only one filter is supplied, return it as is
|
||||
# (no need to wrap in $and based on chroma docs)
|
||||
if len(where.keys()) <= 1:
|
||||
@@ -105,18 +105,18 @@ class ChromaDB(BaseVectorDB):
|
||||
)
|
||||
return self.collection
|
||||
|
||||
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
|
||||
def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
|
||||
:param ids: list of doc ids to check for existence
|
||||
:type ids: List[str]
|
||||
:type ids: list[str]
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, Any]
|
||||
:type where: dict[str, Any]
|
||||
:param limit: Optional. maximum number of documents
|
||||
:type limit: Optional[int]
|
||||
:return: Existing documents.
|
||||
:rtype: List[str]
|
||||
:rtype: list[str]
|
||||
"""
|
||||
args = {}
|
||||
if ids:
|
||||
@@ -129,23 +129,23 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def add(
|
||||
self,
|
||||
embeddings: List[List[float]],
|
||||
documents: List[str],
|
||||
metadatas: List[object],
|
||||
ids: List[str],
|
||||
**kwargs: Optional[Dict[str, Any]],
|
||||
embeddings: list[list[float]],
|
||||
documents: list[str],
|
||||
metadatas: list[object],
|
||||
ids: list[str],
|
||||
**kwargs: Optional[dict[str, Any]],
|
||||
) -> Any:
|
||||
"""
|
||||
Add vectors to chroma database
|
||||
|
||||
:param embeddings: list of embeddings to add
|
||||
:type embeddings: List[List[str]]
|
||||
:type embeddings: list[list[str]]
|
||||
:param documents: Documents
|
||||
:type documents: List[str]
|
||||
:type documents: list[str]
|
||||
:param metadatas: Metadatas
|
||||
:type metadatas: List[object]
|
||||
:type metadatas: list[object]
|
||||
:param ids: ids
|
||||
:type ids: List[str]
|
||||
:type ids: list[str]
|
||||
"""
|
||||
size = len(documents)
|
||||
if len(documents) != size or len(metadatas) != size or len(ids) != size:
|
||||
@@ -182,27 +182,27 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def query(
|
||||
self,
|
||||
input_query: List[str],
|
||||
input_query: list[str],
|
||||
n_results: int,
|
||||
where: Dict[str, any],
|
||||
where: dict[str, any],
|
||||
citations: bool = False,
|
||||
**kwargs: Optional[Dict[str, Any]],
|
||||
) -> Union[List[Tuple[str, Dict]], List[str]]:
|
||||
**kwargs: Optional[dict[str, Any]],
|
||||
) -> Union[list[tuple[str, dict]], list[str]]:
|
||||
"""
|
||||
Query contents from vector database based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:type input_query: list[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, Any]
|
||||
:type where: dict[str, Any]
|
||||
:param citations: we use citations boolean param to return context along with the answer.
|
||||
:type citations: bool, default is False.
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:return: The content of the document that matched your query,
|
||||
along with url of the source and doc_id (if citations flag is true)
|
||||
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
|
||||
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
|
||||
"""
|
||||
try:
|
||||
result = self.collection.query(
|
||||
|
||||
Reference in New Issue
Block a user