#1128 | Remove deprecated type hints from typing module (#1131)

This commit is contained in:
Sandra Serrano
2024-01-09 18:35:24 +01:00
committed by GitHub
parent c9df7a2020
commit 0de9491c61
41 changed files with 272 additions and 267 deletions

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Optional, Union
from chromadb import Collection, QueryResult
from langchain.docstore.document import Document
@@ -76,7 +76,7 @@ class ChromaDB(BaseVectorDB):
return self.client
@staticmethod
def _generate_where_clause(where: Dict[str, any]) -> Dict[str, any]:
def _generate_where_clause(where: dict[str, any]) -> dict[str, any]:
# If only one filter is supplied, return it as is
# (no need to wrap in $and based on chroma docs)
if len(where.keys()) <= 1:
@@ -105,18 +105,18 @@ class ChromaDB(BaseVectorDB):
)
return self.collection
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existence
:type ids: List[str]
:type ids: list[str]
:param where: Optional. to filter data
:type where: Dict[str, Any]
:type where: dict[str, Any]
:param limit: Optional. maximum number of documents
:type limit: Optional[int]
:return: Existing documents.
:rtype: List[str]
:rtype: list[str]
"""
args = {}
if ids:
@@ -129,23 +129,23 @@ class ChromaDB(BaseVectorDB):
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
**kwargs: Optional[Dict[str, Any]],
embeddings: list[list[float]],
documents: list[str],
metadatas: list[object],
ids: list[str],
**kwargs: Optional[dict[str, Any]],
) -> Any:
"""
Add vectors to chroma database
:param embeddings: list of embeddings to add
:type embeddings: List[List[str]]
:type embeddings: list[list[str]]
:param documents: Documents
:type documents: List[str]
:type documents: list[str]
:param metadatas: Metadatas
:type metadatas: List[object]
:type metadatas: list[object]
:param ids: ids
:type ids: List[str]
:type ids: list[str]
"""
size = len(documents)
if len(documents) != size or len(metadatas) != size or len(ids) != size:
@@ -182,27 +182,27 @@ class ChromaDB(BaseVectorDB):
def query(
self,
input_query: List[str],
input_query: list[str],
n_results: int,
where: Dict[str, any],
where: dict[str, any],
citations: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> Union[List[Tuple[str, Dict]], List[str]]:
**kwargs: Optional[dict[str, Any]],
) -> Union[list[tuple[str, dict]], list[str]]:
"""
Query contents from vector database based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:type input_query: list[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: to filter data
:type where: Dict[str, Any]
:type where: dict[str, Any]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:raises InvalidDimensionException: Dimensions do not match.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
"""
try:
result = self.collection.query(