@@ -1,7 +1,8 @@
|
||||
import builtins
|
||||
import logging
|
||||
from collections.abc import Callable
|
||||
from importlib import import_module
|
||||
from typing import Callable, Optional
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config.base_config import BaseConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from embedchain.helpers.json_serializable import JSONSerializable
|
||||
|
||||
@@ -12,10 +12,10 @@ class BaseConfig(JSONSerializable):
|
||||
"""Initializes a configuration class for a class."""
|
||||
pass
|
||||
|
||||
def as_dict(self) -> Dict[str, Any]:
|
||||
def as_dict(self) -> dict[str, Any]:
|
||||
"""Return config object as a dict
|
||||
|
||||
:return: config object as dict
|
||||
:rtype: Dict[str, Any]
|
||||
:rtype: dict[str, Any]
|
||||
"""
|
||||
return vars(self)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from embedchain.config.base_config import BaseConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -30,7 +30,7 @@ class CacheSimilarityEvalConfig(BaseConfig):
|
||||
self.positive = positive
|
||||
|
||||
@staticmethod
|
||||
def from_config(config: Optional[Dict[str, Any]]):
|
||||
def from_config(config: Optional[dict[str, Any]]):
|
||||
if config is None:
|
||||
return CacheSimilarityEvalConfig()
|
||||
else:
|
||||
@@ -65,7 +65,7 @@ class CacheInitConfig(BaseConfig):
|
||||
self.auto_flush = auto_flush
|
||||
|
||||
@staticmethod
|
||||
def from_config(config: Optional[Dict[str, Any]]):
|
||||
def from_config(config: Optional[dict[str, Any]]):
|
||||
if config is None:
|
||||
return CacheInitConfig()
|
||||
else:
|
||||
@@ -86,7 +86,7 @@ class CacheConfig(BaseConfig):
|
||||
self.init_config = init_config
|
||||
|
||||
@staticmethod
|
||||
def from_config(config: Optional[Dict[str, Any]]):
|
||||
def from_config(config: Optional[dict[str, Any]]):
|
||||
if config is None:
|
||||
return CacheConfig()
|
||||
else:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import re
|
||||
from string import Template
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from embedchain.config.base_config import BaseConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -68,12 +68,12 @@ class BaseLlmConfig(BaseConfig):
|
||||
stream: bool = False,
|
||||
deployment_name: Optional[str] = None,
|
||||
system_prompt: Optional[str] = None,
|
||||
where: Dict[str, Any] = None,
|
||||
where: dict[str, Any] = None,
|
||||
query_type: Optional[str] = None,
|
||||
callbacks: Optional[List] = None,
|
||||
callbacks: Optional[list] = None,
|
||||
api_key: Optional[str] = None,
|
||||
endpoint: Optional[str] = None,
|
||||
model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
model_kwargs: Optional[dict[str, Any]] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the LLM.
|
||||
@@ -106,7 +106,7 @@ class BaseLlmConfig(BaseConfig):
|
||||
:param system_prompt: System prompt string, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
|
||||
:type where: Dict[str, Any], optional
|
||||
:type where: dict[str, Any], optional
|
||||
:param api_key: The api key of the custom endpoint, defaults to None
|
||||
:type api_key: Optional[str], optional
|
||||
:param endpoint: The api url of the custom endpoint, defaults to None
|
||||
@@ -114,7 +114,7 @@ class BaseLlmConfig(BaseConfig):
|
||||
:param model_kwargs: A dictionary of key-value pairs to pass to the model, defaults to None
|
||||
:type model_kwargs: Optional[Dict[str, Any]], optional
|
||||
:param callbacks: Langchain callback functions to use, defaults to None
|
||||
:type callbacks: Optional[List], optional
|
||||
:type callbacks: Optional[list], optional
|
||||
:param query_type: The type of query to use, defaults to None
|
||||
:type query_type: Optional[str], optional
|
||||
:raises ValueError: If the template is not valid as template should
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import Dict, List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
from embedchain.config.vectordb.base import BaseVectorDbConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -11,9 +11,9 @@ class ElasticsearchDBConfig(BaseVectorDbConfig):
|
||||
self,
|
||||
collection_name: Optional[str] = None,
|
||||
dir: Optional[str] = None,
|
||||
es_url: Union[str, List[str]] = None,
|
||||
es_url: Union[str, list[str]] = None,
|
||||
cloud_id: Optional[str] = None,
|
||||
**ES_EXTRA_PARAMS: Dict[str, any],
|
||||
**ES_EXTRA_PARAMS: dict[str, any],
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for an Elasticsearch client.
|
||||
@@ -23,13 +23,13 @@ class ElasticsearchDBConfig(BaseVectorDbConfig):
|
||||
:param dir: Path to the database directory, where the database is stored, defaults to None
|
||||
:type dir: Optional[str], optional
|
||||
:param es_url: elasticsearch url or list of nodes url to be used for connection, defaults to None
|
||||
:type es_url: Union[str, List[str]], optional
|
||||
:type es_url: Union[str, list[str]], optional
|
||||
:param ES_EXTRA_PARAMS: extra params dict that can be passed to elasticsearch.
|
||||
:type ES_EXTRA_PARAMS: Dict[str, Any], optional
|
||||
:type ES_EXTRA_PARAMS: dict[str, Any], optional
|
||||
"""
|
||||
if es_url and cloud_id:
|
||||
raise ValueError("Only one of `es_url` and `cloud_id` can be set.")
|
||||
# self, es_url: Union[str, List[str]] = None, **ES_EXTRA_PARAMS: Dict[str, any]):
|
||||
# self, es_url: Union[str, list[str]] = None, **ES_EXTRA_PARAMS: dict[str, any]):
|
||||
self.ES_URL = es_url or os.environ.get("ELASTICSEARCH_URL")
|
||||
self.CLOUD_ID = cloud_id or os.environ.get("ELASTICSEARCH_CLOUD_ID")
|
||||
if not self.ES_URL and not self.CLOUD_ID:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Dict, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config.vectordb.base import BaseVectorDbConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -9,11 +9,11 @@ class OpenSearchDBConfig(BaseVectorDbConfig):
|
||||
def __init__(
|
||||
self,
|
||||
opensearch_url: str,
|
||||
http_auth: Tuple[str, str],
|
||||
http_auth: tuple[str, str],
|
||||
vector_dimension: int = 1536,
|
||||
collection_name: Optional[str] = None,
|
||||
dir: Optional[str] = None,
|
||||
**extra_params: Dict[str, any],
|
||||
**extra_params: dict[str, any],
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for an OpenSearch client.
|
||||
@@ -23,7 +23,7 @@ class OpenSearchDBConfig(BaseVectorDbConfig):
|
||||
:param opensearch_url: URL of the OpenSearch domain
|
||||
:type opensearch_url: str, Eg, "http://localhost:9200"
|
||||
:param http_auth: Tuple of username and password
|
||||
:type http_auth: Tuple[str, str], Eg, ("username", "password")
|
||||
:type http_auth: tuple[str, str], Eg, ("username", "password")
|
||||
:param vector_dimension: Dimension of the vector, defaults to 1536 (openai embedding model)
|
||||
:type vector_dimension: int, optional
|
||||
:param dir: Path to the database directory, where the database is stored, defaults to None
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config.vectordb.base import BaseVectorDbConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -12,7 +12,7 @@ class PineconeDBConfig(BaseVectorDbConfig):
|
||||
dir: Optional[str] = None,
|
||||
vector_dimension: int = 1536,
|
||||
metric: Optional[str] = "cosine",
|
||||
**extra_params: Dict[str, any],
|
||||
**extra_params: dict[str, any],
|
||||
):
|
||||
self.metric = metric
|
||||
self.vector_dimension = vector_dimension
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config.vectordb.base import BaseVectorDbConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -15,10 +15,10 @@ class QdrantDBConfig(BaseVectorDbConfig):
|
||||
self,
|
||||
collection_name: Optional[str] = None,
|
||||
dir: Optional[str] = None,
|
||||
hnsw_config: Optional[Dict[str, any]] = None,
|
||||
quantization_config: Optional[Dict[str, any]] = None,
|
||||
hnsw_config: Optional[dict[str, any]] = None,
|
||||
quantization_config: Optional[dict[str, any]] = None,
|
||||
on_disk: Optional[bool] = None,
|
||||
**extra_params: Dict[str, any],
|
||||
**extra_params: dict[str, any],
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for a qdrant client.
|
||||
@@ -28,9 +28,9 @@ class QdrantDBConfig(BaseVectorDbConfig):
|
||||
:param dir: Path to the database directory, where the database is stored, defaults to None
|
||||
:type dir: Optional[str], optional
|
||||
:param hnsw_config: Params for HNSW index
|
||||
:type hnsw_config: Optional[Dict[str, any]], defaults to None
|
||||
:type hnsw_config: Optional[dict[str, any]], defaults to None
|
||||
:param quantization_config: Params for quantization, if None - quantization will be disabled
|
||||
:type quantization_config: Optional[Dict[str, any]], defaults to None
|
||||
:type quantization_config: Optional[dict[str, any]], defaults to None
|
||||
:param on_disk: If true - point`s payload will not be stored in memory.
|
||||
It will be read from the disk every time it is requested.
|
||||
This setting saves RAM by (slightly) increasing the response time.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config.vectordb.base import BaseVectorDbConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
@@ -10,7 +10,7 @@ class WeaviateDBConfig(BaseVectorDbConfig):
|
||||
self,
|
||||
collection_name: Optional[str] = None,
|
||||
dir: Optional[str] = None,
|
||||
**extra_params: Dict[str, any],
|
||||
**extra_params: dict[str, any],
|
||||
):
|
||||
self.extra_params = extra_params
|
||||
super().__init__(collection_name=collection_name, dir=dir)
|
||||
|
||||
Reference in New Issue
Block a user