Refactored collaborative task agent documentation to enhance clarity and simplified (#2725)
This commit is contained in:
@@ -1,273 +1,125 @@
|
||||
---
|
||||
title: Collaborative Task Agent
|
||||
title: Multi-User Collaboration with Mem0
|
||||
---
|
||||
|
||||
<Snippet file="paper-release.mdx" />
|
||||
|
||||
# Building a Collaborative Task Management System with Mem0
|
||||
|
||||
## Overview
|
||||
|
||||
Mem0's advanced attribution capabilities now allow you to create multi-user , multi-agent collaborative or chat systems by attaching an **`actor_id`** to each memory. By setting the users's name in `message["name"]`, you can build powerful team collaboration tools where contributions are properly attributed to their authors.
|
||||
Build a multi-user collaborative chat or task management system with Mem0. Each message is attributed to its author, and all messages are stored in a shared project space. Mem0 makes it easy to track contributions, sort and group messages, and collaborate in real time.
|
||||
|
||||
When using `infer=False`, messages are stored exactly as provided while still preserving actor metadata—making this approach ideal for:
|
||||
## Setup
|
||||
|
||||
- Multi-user chat applications
|
||||
- Team brainstorming sessions
|
||||
- Any collaborative "shared canvas" scenario
|
||||
Install the required packages:
|
||||
|
||||
> **ℹ️ Note**
|
||||
> Actor attribution works today with `infer=False` mode.
|
||||
> Full attribution support for the fact-extraction pipeline (`infer=True`) will be available in an upcoming release.
|
||||
|
||||
## Key Concepts
|
||||
|
||||
### Session Context
|
||||
|
||||
Session context is defined by one of three identifiers:
|
||||
- **`user_id`**: Ideal for personal memory or user-specific data
|
||||
- **`agent_id`**: Used for agent-specific memory storage
|
||||
- **`run_id`**: Best for shared task contexts or collaborative spaces
|
||||
|
||||
Developers choose which identifier best represents their use case. In this example, we use `run_id` to create a shared project space where all team members can collaborate.
|
||||
|
||||
### Actor Attribution
|
||||
|
||||
Actor attribution is derived internally from:
|
||||
- **`message["name"]`**: Becomes the `actor_id` in the memory's metadata
|
||||
- **`message["role"]`**: Stored as the `role` in the memory's metadata
|
||||
|
||||
Note that `actor_id` is not a top-level parameter for the `add()` method, but is instead extracted from the message itself.
|
||||
|
||||
### Memory Filtering
|
||||
|
||||
When retrieving memories, you can filter by actor using the `filters` parameter:
|
||||
```python
|
||||
# Get all memories from a specific actor
|
||||
memories = mem.search("query", run_id="landing-v1", filters={"actor_id": "alice"})
|
||||
|
||||
# Get all memories from all team members
|
||||
all_memories = mem.get_all(run_id="landing-v1")
|
||||
```bash
|
||||
pip install openai mem0ai
|
||||
```
|
||||
|
||||
## Upcoming Features
|
||||
|
||||
Mem0 will soon support full actor attribution with `infer=True`, enabling automatic extraction of actor names during the fact extraction process. This enhancement will allow the system to:
|
||||
|
||||
1. Maintain attribution information when converting raw messages to semantic facts
|
||||
2. Associate extracted knowledge with its original source
|
||||
3. Track the provenance of information across complex interactions
|
||||
|
||||
Mem0's actor attribution system can power a wide range of advanced conversation and agent scenarios:
|
||||
|
||||
### Conversation Scenarios
|
||||
|
||||
| Scenario | Description | Implementation |
|
||||
|----------|-------------|----------------|
|
||||
| **Simple Chat** | One-to-one conversation between user and assistant
|
||||
| **Multi-User Chat** | Multiple users conversing with a single assistant
|
||||
| **Multi-Agent Chat** | Multiple AI assistants with distinct personas or capabilities
|
||||
| **Group Chat** | Complex interactions between multiple humans and assistants
|
||||
### Agent-Based Applications
|
||||
|
||||
The collaborative task agent uses a simple but powerful architecture:
|
||||
|
||||
* A **shared project space** identified by a single `run_id`
|
||||
* Each participant (user or AI) writes with their own **unique name** which becomes the `actor_id` in Mem0
|
||||
* All memories can be searched, filtered, or visualized by actor
|
||||
|
||||
|
||||
## Implementation
|
||||
|
||||
Below is a complete implementation of a collaborative task agent that demonstrates how to build team-oriented applications with Mem0.
|
||||
## Full Code Example
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
from mem0 import Memory
|
||||
import os
|
||||
from datetime import datetime # For parsing and formatting timestamps
|
||||
from datetime import datetime
|
||||
from collections import defaultdict
|
||||
|
||||
# Configuration
|
||||
os.environ["OPENAI_API_KEY"] = "sk-your-key" # Replace with your key
|
||||
client = OpenAI()
|
||||
# Set your OpenAI API key
|
||||
os.environ["OPENAI_API_KEY"] = "sk-your-key"
|
||||
|
||||
RUN_ID = "landing-v1" # Shared project context
|
||||
APP_ID = "task-agent-demo" # Application identifier
|
||||
# Shared project context
|
||||
RUN_ID = "project-demo"
|
||||
|
||||
# Initialize Mem0 with default settings (local Qdrant + SQLite)
|
||||
# Ensure the path is writable if not using in-memory
|
||||
# Initialize Mem0
|
||||
mem = Memory()
|
||||
|
||||
class TaskAgent:
|
||||
def __init__(self, run_id: str):
|
||||
"""
|
||||
Initialize a collaborative task agent for a specific project.
|
||||
|
||||
Args:
|
||||
run_id: Unique identifier for this project workspace
|
||||
"""
|
||||
class CollaborativeAgent:
|
||||
def __init__(self, run_id):
|
||||
self.run_id = run_id
|
||||
self.mem = mem
|
||||
|
||||
def add_message(self, role: str, speaker: str, content: str):
|
||||
"""
|
||||
Store a chat message with proper attribution.
|
||||
def add_message(self, role, name, content):
|
||||
msg = {"role": role, "name": name, "content": content}
|
||||
self.mem.add([msg], run_id=self.run_id, infer=False)
|
||||
|
||||
Args:
|
||||
role: Message role (user, assistant, system)
|
||||
speaker: Name of the person/agent speaking (becomes actor_id)
|
||||
content: The actual message content
|
||||
"""
|
||||
msg = {"role": role, "name": speaker, "content": content}
|
||||
# Ensure created_at is stored. Mem0 does this by default.
|
||||
self.mem.add(
|
||||
[msg],
|
||||
run_id=self.run_id,
|
||||
metadata={"app_id": APP_ID},
|
||||
infer=False
|
||||
)
|
||||
|
||||
def brainstorm(self, prompt: str, speaker: str = "assistant", search_limit: int = 10, exclude_assistant_context: bool = False):
|
||||
"""
|
||||
Generate a response based on project context and team input.
|
||||
|
||||
Args:
|
||||
prompt: The question or task to address
|
||||
speaker: Name to attribute the assistant's response to
|
||||
search_limit: Max number of memories to retrieve for context
|
||||
exclude_assistant_context: If True, filters out assistant's own messages from context
|
||||
|
||||
Returns:
|
||||
str: The assistant's response
|
||||
"""
|
||||
# Retrieve relevant context from team's shared memory
|
||||
# Fetch a bit more if we plan to filter, to ensure we still get enough relevant user messages.
|
||||
fetch_limit = search_limit + 5 if exclude_assistant_context else search_limit
|
||||
retrieved_memories = self.mem.search(prompt, run_id=self.run_id, limit=fetch_limit)["results"]
|
||||
|
||||
# Client-side sorting by 'created_at' to prioritize recent memories for context.
|
||||
# Note: Timestamps should be in a directly comparable format or parsed.
|
||||
# Mem0 stores created_at as ISO format strings, which are comparable.
|
||||
retrieved_memories.sort(key=lambda m: m.get('created_at', ''), reverse=True)
|
||||
|
||||
ctx_for_llm = []
|
||||
if exclude_assistant_context:
|
||||
for m in retrieved_memories:
|
||||
if m.get("role") != "assistant":
|
||||
ctx_for_llm.append(m)
|
||||
if len(ctx_for_llm) >= search_limit:
|
||||
break
|
||||
else:
|
||||
ctx_for_llm = retrieved_memories[:search_limit]
|
||||
|
||||
context_parts = []
|
||||
for m in ctx_for_llm:
|
||||
actor = m.get('actor_id') or "Unknown"
|
||||
# Attempt to parse and format the timestamp for better readability
|
||||
try:
|
||||
ts_iso = m.get('created_at', '')
|
||||
if ts_iso:
|
||||
ts_obj = datetime.fromisoformat(ts_iso.replace('Z', '+00:00')) # Handle Zulu time
|
||||
formatted_ts = ts_obj.strftime('%Y-%m-%d %H:%M:%S %Z')
|
||||
else:
|
||||
formatted_ts = "Timestamp N/A"
|
||||
except ValueError:
|
||||
formatted_ts = ts_iso # Fallback to raw string if parsing fails
|
||||
context_parts.append(f"- {m['memory']} (by {actor} at {formatted_ts})")
|
||||
|
||||
context_str = "\n".join(context_parts)
|
||||
|
||||
# Generate response with context-aware prompting
|
||||
sys_prompt = "You are the team's project assistant. Use the provided memory context, paying attention to timestamps for recency, to answer the user's query or perform the task."
|
||||
user_prompt_with_context = f"Query: {prompt}\n\nRelevant Context (most recent first):\n{context_str}"
|
||||
|
||||
msgs = [
|
||||
{"role": "system", "content": sys_prompt},
|
||||
{"role": "user", "content": user_prompt_with_context}
|
||||
def brainstorm(self, prompt):
|
||||
# Get recent messages for context
|
||||
memories = self.mem.search(prompt, run_id=self.run_id, limit=5)["results"]
|
||||
context = "\n".join(f"- {m['memory']} (by {m.get('actor_id', 'Unknown')})" for m in memories)
|
||||
client = OpenAI()
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful project assistant."},
|
||||
{"role": "user", "content": f"Prompt: {prompt}\nContext:\n{context}"}
|
||||
]
|
||||
|
||||
reply = client.chat.completions.create(
|
||||
model="gpt-4o-mini",
|
||||
messages=msgs
|
||||
messages=messages
|
||||
).choices[0].message.content.strip()
|
||||
|
||||
# Store the assistant's response with attribution
|
||||
self.add_message("assistant", speaker, reply)
|
||||
self.add_message("assistant", "assistant", reply)
|
||||
return reply
|
||||
|
||||
def dump(self, sort_by_time: bool = True, group_by_speaker: bool = False):
|
||||
"""
|
||||
Display all messages in the shared project space with attribution.
|
||||
Can be sorted by time and/or grouped by speaker.
|
||||
"""
|
||||
results = self.mem.get_all(run_id=self.run_id)["results"]
|
||||
def get_all_messages(self):
|
||||
return self.mem.get_all(run_id=self.run_id)["results"]
|
||||
|
||||
if not results:
|
||||
print("No memories found for this run.")
|
||||
return
|
||||
|
||||
# Sort by 'created_at' if requested
|
||||
if sort_by_time:
|
||||
results.sort(key=lambda m: m.get('created_at', ''))
|
||||
print(f"\n--- Project memory (run_id: {self.run_id}, sorted by time) ---")
|
||||
else:
|
||||
print(f"\n--- Project memory (run_id: {self.run_id}) ---")
|
||||
|
||||
if group_by_speaker:
|
||||
from collections import defaultdict
|
||||
grouped_memories = defaultdict(list)
|
||||
for m in results: # Use already potentially sorted results
|
||||
grouped_memories[m.get("actor_id") or "Unknown"].append(m)
|
||||
|
||||
for speaker, mem_list in grouped_memories.items():
|
||||
print(f"\n=== Speaker: {speaker} ===")
|
||||
# If not already sorted by time globally, sort within group
|
||||
# If already sorted globally, this re-sort is redundant unless different key.
|
||||
# For simplicity, if sort_by_time was true, list is already sorted.
|
||||
for m_item in mem_list:
|
||||
timestamp_str = m_item.get('created_at', 'Timestamp N/A')
|
||||
try:
|
||||
# Basic parsing for display, adjust as needed
|
||||
dt_obj = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
||||
formatted_time = dt_obj.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except ValueError:
|
||||
formatted_time = timestamp_str # Fallback
|
||||
print(f"[{formatted_time:19}] {m_item['memory']}")
|
||||
else: # Not grouping by speaker
|
||||
for m in results:
|
||||
def print_sorted_by_time(self):
|
||||
messages = self.get_all_messages()
|
||||
messages.sort(key=lambda m: m.get('created_at', ''))
|
||||
print("\n--- Messages (sorted by time) ---")
|
||||
for m in messages:
|
||||
who = m.get("actor_id") or "Unknown"
|
||||
timestamp_str = m.get('created_at', 'Timestamp N/A')
|
||||
ts = m.get('created_at', 'Timestamp N/A')
|
||||
try:
|
||||
dt_obj = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
||||
formatted_time = dt_obj.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except ValueError:
|
||||
formatted_time = timestamp_str # Fallback
|
||||
print(f"[{formatted_time:19}][{who:8}] {m['memory']}")
|
||||
|
||||
# Demo Usage
|
||||
agent = TaskAgent(RUN_ID)
|
||||
|
||||
# Team collaboration session
|
||||
agent.add_message("user", "alice", "Let's list tasks for the new landing page.")
|
||||
agent.add_message("user", "bob", "I'll own the hero section copy. Maybe tomorrow.")
|
||||
agent.add_message("user", "carol", "I'll choose three product screenshots later today.")
|
||||
agent.add_message("user", "alice", "Actually, I will work on the hero section copy today.")
|
||||
|
||||
|
||||
print("\nAssistant brainstorm reply (default settings):\n")
|
||||
print(agent.brainstorm("What are the current open tasks related to the hero section?"))
|
||||
|
||||
print("\nAssistant brainstorm reply (excluding its own prior context):\n")
|
||||
print(agent.brainstorm("Summarize what Alice is working on.", exclude_assistant_context=True))
|
||||
|
||||
|
||||
print("\n--- Dump (sorted by time by default) ---")
|
||||
agent.dump()
|
||||
|
||||
print("\n--- Dump (grouped by speaker, also sorted by time globally) ---")
|
||||
agent.dump(group_by_speaker=True)
|
||||
|
||||
print("\n--- Dump (default order, not sorted by time explicitly by dump) ---")
|
||||
agent.dump(sort_by_time=False)
|
||||
dt = datetime.fromisoformat(ts.replace('Z', '+00:00'))
|
||||
ts_fmt = dt.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except Exception:
|
||||
ts_fmt = ts
|
||||
print(f"[{ts_fmt}] [{who}] {m['memory']}")
|
||||
|
||||
def print_grouped_by_actor(self):
|
||||
messages = self.get_all_messages()
|
||||
grouped = defaultdict(list)
|
||||
for m in messages:
|
||||
grouped[m.get("actor_id") or "Unknown"].append(m)
|
||||
print("\n--- Messages (grouped by actor) ---")
|
||||
for actor, mems in grouped.items():
|
||||
print(f"\n=== {actor} ===")
|
||||
for m in mems:
|
||||
ts = m.get('created_at', 'Timestamp N/A')
|
||||
try:
|
||||
dt = datetime.fromisoformat(ts.replace('Z', '+00:00'))
|
||||
ts_fmt = dt.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except Exception:
|
||||
ts_fmt = ts
|
||||
print(f"[{ts_fmt}] {m['memory']}")
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
# Example usage
|
||||
agent = CollaborativeAgent(RUN_ID)
|
||||
agent.add_message("user", "alice", "Let's list tasks for the new landing page.")
|
||||
agent.add_message("user", "bob", "I'll own the hero section copy.")
|
||||
agent.add_message("user", "carol", "I'll choose product screenshots.")
|
||||
|
||||
# Brainstorm with context
|
||||
print("\nAssistant reply:\n", agent.brainstorm("What are the current open tasks?"))
|
||||
|
||||
# Print all messages sorted by time
|
||||
agent.print_sorted_by_time()
|
||||
|
||||
# Print all messages grouped by actor
|
||||
agent.print_grouped_by_actor()
|
||||
```
|
||||
|
||||
## Key Points
|
||||
|
||||
- Each message is attributed to a user or agent (actor)
|
||||
- All messages are stored in a shared project space (`run_id`)
|
||||
- You can sort messages by time, group by actor, and format timestamps for clarity
|
||||
- Mem0 makes it easy to build collaborative, attributed chat/task systems
|
||||
|
||||
## Conclusion
|
||||
|
||||
Mem0 enables fast, transparent collaboration for teams and agents, with full attribution, flexible memory search, and easy message organization.
|
||||
|
||||
Reference in New Issue
Block a user