Add batch_size in config for VectorDB (#1448)
This commit is contained in:
@@ -217,6 +217,7 @@ Alright, let's dive into what each key means in the yaml config above:
|
||||
- `collection_name` (String): The initial collection name for the vectordb, set to 'full-stack-app'.
|
||||
- `dir` (String): The directory for the local database, set to 'db'.
|
||||
- `allow_reset` (Boolean): Indicates whether resetting the vectordb is allowed, set to true.
|
||||
- `batch_size` (Integer): The batch size for docs insertion in vectordb, defaults to `100`
|
||||
<Note>We recommend you to checkout vectordb specific config [here](https://docs.embedchain.ai/components/vector-databases)</Note>
|
||||
4. `embedder` Section:
|
||||
- `provider` (String): The provider for the embedder, set to 'openai'. You can find the full list of embedding model providers in [our docs](/components/embedding-models).
|
||||
|
||||
@@ -10,6 +10,7 @@ class BaseVectorDbConfig(BaseConfig):
|
||||
dir: str = "db",
|
||||
host: Optional[str] = None,
|
||||
port: Optional[str] = None,
|
||||
batch_size: Optional[int] = 100,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@@ -23,6 +24,8 @@ class BaseVectorDbConfig(BaseConfig):
|
||||
:type host: Optional[str], optional
|
||||
:param host: Database connection remote port. Use this if you run Embedchain as a client, defaults to None
|
||||
:type port: Optional[str], optional
|
||||
:param batch_size: Number of items to insert in one batch, defaults to 100
|
||||
:type batch_size: Optional[int], optional
|
||||
:param kwargs: Additional keyword arguments
|
||||
:type kwargs: dict
|
||||
"""
|
||||
@@ -30,6 +33,7 @@ class BaseVectorDbConfig(BaseConfig):
|
||||
self.dir = dir
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.batch_size = batch_size
|
||||
# Assign additional keyword arguments
|
||||
if kwargs:
|
||||
for key, value in kwargs.items():
|
||||
|
||||
@@ -29,8 +29,6 @@ logger = logging.getLogger(__name__)
|
||||
class ChromaDB(BaseVectorDB):
|
||||
"""Vector database using ChromaDB."""
|
||||
|
||||
BATCH_SIZE = 100
|
||||
|
||||
def __init__(self, config: Optional[ChromaDbConfig] = None):
|
||||
"""Initialize a new ChromaDB instance
|
||||
|
||||
@@ -155,11 +153,11 @@ class ChromaDB(BaseVectorDB):
|
||||
" Ids size: {}".format(len(documents), len(metadatas), len(ids))
|
||||
)
|
||||
|
||||
for i in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in chromadb"):
|
||||
for i in tqdm(range(0, len(documents), self.config.batch_size), desc="Inserting batches in chromadb"):
|
||||
self.collection.add(
|
||||
documents=documents[i : i + self.BATCH_SIZE],
|
||||
metadatas=metadatas[i : i + self.BATCH_SIZE],
|
||||
ids=ids[i : i + self.BATCH_SIZE],
|
||||
documents=documents[i : i + self.config.batch_size],
|
||||
metadatas=metadatas[i : i + self.config.batch_size],
|
||||
ids=ids[i : i + self.config.batch_size],
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -23,8 +23,6 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
Elasticsearch as vector database
|
||||
"""
|
||||
|
||||
BATCH_SIZE = 100
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[ElasticsearchDBConfig] = None,
|
||||
@@ -140,7 +138,9 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
|
||||
for chunk in chunks(
|
||||
list(zip(ids, documents, metadatas, embeddings)), self.BATCH_SIZE, desc="Inserting batches in elasticsearch"
|
||||
list(zip(ids, documents, metadatas, embeddings)),
|
||||
self.config.batch_size,
|
||||
desc="Inserting batches in elasticsearch",
|
||||
): # noqa: E501
|
||||
ids, docs, metadatas, embeddings = [], [], [], []
|
||||
for id, text, metadata, embedding in chunk:
|
||||
|
||||
@@ -18,8 +18,6 @@ class LanceDB(BaseVectorDB):
|
||||
LanceDB as vector database
|
||||
"""
|
||||
|
||||
BATCH_SIZE = 100
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[LanceDBConfig] = None,
|
||||
|
||||
@@ -28,8 +28,6 @@ class OpenSearchDB(BaseVectorDB):
|
||||
OpenSearch as vector database
|
||||
"""
|
||||
|
||||
BATCH_SIZE = 100
|
||||
|
||||
def __init__(self, config: OpenSearchDBConfig):
|
||||
"""OpenSearch as vector database.
|
||||
|
||||
@@ -120,8 +118,10 @@ class OpenSearchDB(BaseVectorDB):
|
||||
"""Adds documents to the opensearch index"""
|
||||
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
for batch_start in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in opensearch"):
|
||||
batch_end = batch_start + self.BATCH_SIZE
|
||||
for batch_start in tqdm(
|
||||
range(0, len(documents), self.config.batch_size), desc="Inserting batches in opensearch"
|
||||
):
|
||||
batch_end = batch_start + self.config.batch_size
|
||||
batch_documents = documents[batch_start:batch_end]
|
||||
batch_embeddings = embeddings[batch_start:batch_end]
|
||||
|
||||
|
||||
@@ -25,8 +25,6 @@ class PineconeDB(BaseVectorDB):
|
||||
Pinecone as vector database
|
||||
"""
|
||||
|
||||
BATCH_SIZE = 100
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[PineconeDBConfig] = None,
|
||||
@@ -103,10 +101,9 @@ class PineconeDB(BaseVectorDB):
|
||||
existing_ids = list()
|
||||
metadatas = []
|
||||
|
||||
batch_size = 100
|
||||
if ids is not None:
|
||||
for i in range(0, len(ids), batch_size):
|
||||
result = self.pinecone_index.fetch(ids=ids[i : i + batch_size])
|
||||
for i in range(0, len(ids), self.config.batch_size):
|
||||
result = self.pinecone_index.fetch(ids=ids[i : i + self.config.batch_size])
|
||||
vectors = result.get("vectors")
|
||||
batch_existing_ids = list(vectors.keys())
|
||||
existing_ids.extend(batch_existing_ids)
|
||||
@@ -145,7 +142,7 @@ class PineconeDB(BaseVectorDB):
|
||||
},
|
||||
)
|
||||
|
||||
for chunk in chunks(docs, self.BATCH_SIZE, desc="Adding chunks in batches"):
|
||||
for chunk in chunks(docs, self.config.batch_size, desc="Adding chunks in batches"):
|
||||
self.pinecone_index.upsert(chunk, **kwargs)
|
||||
|
||||
def query(
|
||||
|
||||
@@ -21,8 +21,6 @@ class QdrantDB(BaseVectorDB):
|
||||
Qdrant as vector database
|
||||
"""
|
||||
|
||||
BATCH_SIZE = 10
|
||||
|
||||
def __init__(self, config: QdrantDBConfig = None):
|
||||
"""
|
||||
Qdrant as vector database
|
||||
@@ -116,7 +114,7 @@ class QdrantDB(BaseVectorDB):
|
||||
collection_name=self.collection_name,
|
||||
scroll_filter=models.Filter(must=qdrant_must_filters),
|
||||
offset=offset,
|
||||
limit=self.BATCH_SIZE,
|
||||
limit=self.config.batch_size,
|
||||
)
|
||||
offset = response[1]
|
||||
for doc in response[0]:
|
||||
@@ -148,13 +146,13 @@ class QdrantDB(BaseVectorDB):
|
||||
qdrant_ids.append(id)
|
||||
payloads.append({"identifier": id, "text": document, "metadata": copy.deepcopy(metadata)})
|
||||
|
||||
for i in tqdm(range(0, len(qdrant_ids), self.BATCH_SIZE), desc="Adding data in batches"):
|
||||
for i in tqdm(range(0, len(qdrant_ids), self.config.batch_size), desc="Adding data in batches"):
|
||||
self.client.upsert(
|
||||
collection_name=self.collection_name,
|
||||
points=Batch(
|
||||
ids=qdrant_ids[i : i + self.BATCH_SIZE],
|
||||
payloads=payloads[i : i + self.BATCH_SIZE],
|
||||
vectors=embeddings[i : i + self.BATCH_SIZE],
|
||||
ids=qdrant_ids[i : i + self.config.batch_size],
|
||||
payloads=payloads[i : i + self.config.batch_size],
|
||||
vectors=embeddings[i : i + self.config.batch_size],
|
||||
),
|
||||
**kwargs,
|
||||
)
|
||||
@@ -251,4 +249,4 @@ class QdrantDB(BaseVectorDB):
|
||||
|
||||
def delete(self, where: dict):
|
||||
db_filter = self._generate_query(where)
|
||||
self.client.delete(collection_name=self.collection_name, points_selector=db_filter)
|
||||
self.client.delete(collection_name=self.collection_name, points_selector=db_filter)
|
||||
|
||||
@@ -20,8 +20,6 @@ class WeaviateDB(BaseVectorDB):
|
||||
Weaviate as vector database
|
||||
"""
|
||||
|
||||
BATCH_SIZE = 100
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[WeaviateDBConfig] = None,
|
||||
@@ -169,7 +167,7 @@ class WeaviateDB(BaseVectorDB):
|
||||
)
|
||||
.with_where(weaviate_where_clause)
|
||||
.with_additional(["id"])
|
||||
.with_limit(limit or self.BATCH_SIZE),
|
||||
.with_limit(limit or self.config.batch_size),
|
||||
offset,
|
||||
)
|
||||
|
||||
@@ -198,7 +196,7 @@ class WeaviateDB(BaseVectorDB):
|
||||
:type ids: list[str]
|
||||
"""
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
self.client.batch.configure(batch_size=self.BATCH_SIZE, timeout_retries=3) # Configure batch
|
||||
self.client.batch.configure(batch_size=self.config.batch_size, timeout_retries=3) # Configure batch
|
||||
with self.client.batch as batch: # Initialize a batch process
|
||||
for id, text, metadata, embedding in zip(ids, documents, metadatas, embeddings):
|
||||
doc = {"identifier": id, "text": text}
|
||||
|
||||
@@ -124,7 +124,7 @@ class TestWeaviateDb(unittest.TestCase):
|
||||
db = WeaviateDB()
|
||||
app_config = AppConfig(collect_metrics=False)
|
||||
App(config=app_config, db=db, embedding_model=embedder)
|
||||
db.BATCH_SIZE = 1
|
||||
db.config.batch_size = 1
|
||||
|
||||
documents = ["This is test document"]
|
||||
metadatas = [None]
|
||||
|
||||
Reference in New Issue
Block a user