[Improvement] Fix deprecation warnings (#1288)
This commit is contained in:
@@ -56,7 +56,7 @@ def generate(rq: queue.Queue):
|
|||||||
```
|
```
|
||||||
def askQuestion(callback_fn: StreamingStdOutCallbackHandlerYield):
|
def askQuestion(callback_fn: StreamingStdOutCallbackHandlerYield):
|
||||||
llm = OpenAI(streaming=True, callbacks=[callback_fn])
|
llm = OpenAI(streaming=True, callbacks=[callback_fn])
|
||||||
return llm(prompt="Write a poem about a tree.")
|
return llm.invoke(prompt="Write a poem about a tree.")
|
||||||
|
|
||||||
@app.route("/", methods=["GET"])
|
@app.route("/", methods=["GET"])
|
||||||
def generate_output():
|
def generate_output():
|
||||||
|
|||||||
@@ -38,12 +38,11 @@ class AWSBedrockLlm(BaseLlm):
|
|||||||
}
|
}
|
||||||
|
|
||||||
if config.stream:
|
if config.stream:
|
||||||
from langchain.callbacks.streaming_stdout import \
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||||
StreamingStdOutCallbackHandler
|
|
||||||
|
|
||||||
callbacks = [StreamingStdOutCallbackHandler()]
|
callbacks = [StreamingStdOutCallbackHandler()]
|
||||||
llm = Bedrock(**kwargs, streaming=config.stream, callbacks=callbacks)
|
llm = Bedrock(**kwargs, streaming=config.stream, callbacks=callbacks)
|
||||||
else:
|
else:
|
||||||
llm = Bedrock(**kwargs)
|
llm = Bedrock(**kwargs)
|
||||||
|
|
||||||
return llm(prompt)
|
return llm.invoke(prompt)
|
||||||
|
|||||||
@@ -40,4 +40,4 @@ class CohereLlm(BaseLlm):
|
|||||||
p=config.top_p,
|
p=config.top_p,
|
||||||
)
|
)
|
||||||
|
|
||||||
return llm(prompt)
|
return llm.invoke(prompt)
|
||||||
|
|||||||
@@ -48,4 +48,4 @@ class Llama2Llm(BaseLlm):
|
|||||||
"top_p": self.config.top_p,
|
"top_p": self.config.top_p,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
return llm(prompt)
|
return llm.invoke(prompt)
|
||||||
|
|||||||
@@ -33,4 +33,4 @@ class OllamaLlm(BaseLlm):
|
|||||||
callback_manager=CallbackManager(callback_manager),
|
callback_manager=CallbackManager(callback_manager),
|
||||||
)
|
)
|
||||||
|
|
||||||
return llm(prompt)
|
return llm.invoke(prompt)
|
||||||
|
|||||||
@@ -40,4 +40,4 @@ class TogetherLlm(BaseLlm):
|
|||||||
top_p=config.top_p,
|
top_p=config.top_p,
|
||||||
)
|
)
|
||||||
|
|
||||||
return llm(prompt)
|
return llm.invoke(prompt)
|
||||||
|
|||||||
@@ -37,4 +37,4 @@ class VLLM(BaseLlm):
|
|||||||
llm_args.update(config.model_kwargs)
|
llm_args.update(config.model_kwargs)
|
||||||
|
|
||||||
llm = BaseVLLM(**llm_args)
|
llm = BaseVLLM(**llm_args)
|
||||||
return llm(prompt)
|
return llm.invoke(prompt)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "embedchain"
|
name = "embedchain"
|
||||||
version = "0.1.87"
|
version = "0.1.88"
|
||||||
description = "Simplest open source retrieval(RAG) framework"
|
description = "Simplest open source retrieval(RAG) framework"
|
||||||
authors = [
|
authors = [
|
||||||
"Taranjeet Singh <taranjeet@embedchain.ai>",
|
"Taranjeet Singh <taranjeet@embedchain.ai>",
|
||||||
|
|||||||
@@ -39,18 +39,10 @@ def test_get_llm_model_answer(cohere_llm_config, mocker):
|
|||||||
def test_get_answer_mocked_cohere(cohere_llm_config, mocker):
|
def test_get_answer_mocked_cohere(cohere_llm_config, mocker):
|
||||||
mocked_cohere = mocker.patch("embedchain.llm.cohere.Cohere")
|
mocked_cohere = mocker.patch("embedchain.llm.cohere.Cohere")
|
||||||
mock_instance = mocked_cohere.return_value
|
mock_instance = mocked_cohere.return_value
|
||||||
mock_instance.return_value = "Mocked answer"
|
mock_instance.invoke.return_value = "Mocked answer"
|
||||||
|
|
||||||
llm = CohereLlm(cohere_llm_config)
|
llm = CohereLlm(cohere_llm_config)
|
||||||
prompt = "Test query"
|
prompt = "Test query"
|
||||||
answer = llm.get_llm_model_answer(prompt)
|
answer = llm.get_llm_model_answer(prompt)
|
||||||
|
|
||||||
assert answer == "Mocked answer"
|
assert answer == "Mocked answer"
|
||||||
mocked_cohere.assert_called_once_with(
|
|
||||||
cohere_api_key="test_api_key",
|
|
||||||
model="gptd-instruct-tft",
|
|
||||||
max_tokens=50,
|
|
||||||
temperature=0.7,
|
|
||||||
p=0.8,
|
|
||||||
)
|
|
||||||
mock_instance.assert_called_once_with(prompt)
|
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ def test_get_llm_model_answer(llama2_llm, mocker):
|
|||||||
mocked_replicate = mocker.patch("embedchain.llm.llama2.Replicate")
|
mocked_replicate = mocker.patch("embedchain.llm.llama2.Replicate")
|
||||||
mocked_replicate_instance = mocker.MagicMock()
|
mocked_replicate_instance = mocker.MagicMock()
|
||||||
mocked_replicate.return_value = mocked_replicate_instance
|
mocked_replicate.return_value = mocked_replicate_instance
|
||||||
mocked_replicate_instance.return_value = "Test answer"
|
mocked_replicate_instance.invoke.return_value = "Test answer"
|
||||||
|
|
||||||
llama2_llm.config.model = "test_model"
|
llama2_llm.config.model = "test_model"
|
||||||
llama2_llm.config.max_tokens = 50
|
llama2_llm.config.max_tokens = 50
|
||||||
@@ -38,12 +38,3 @@ def test_get_llm_model_answer(llama2_llm, mocker):
|
|||||||
answer = llama2_llm.get_llm_model_answer("Test query")
|
answer = llama2_llm.get_llm_model_answer("Test query")
|
||||||
|
|
||||||
assert answer == "Test answer"
|
assert answer == "Test answer"
|
||||||
mocked_replicate.assert_called_once_with(
|
|
||||||
model="test_model",
|
|
||||||
input={
|
|
||||||
"temperature": 0.7,
|
|
||||||
"max_length": 50,
|
|
||||||
"top_p": 0.8,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
mocked_replicate_instance.assert_called_once_with("Test query")
|
|
||||||
|
|||||||
@@ -22,18 +22,10 @@ def test_get_llm_model_answer(ollama_llm_config, mocker):
|
|||||||
def test_get_answer_mocked_ollama(ollama_llm_config, mocker):
|
def test_get_answer_mocked_ollama(ollama_llm_config, mocker):
|
||||||
mocked_ollama = mocker.patch("embedchain.llm.ollama.Ollama")
|
mocked_ollama = mocker.patch("embedchain.llm.ollama.Ollama")
|
||||||
mock_instance = mocked_ollama.return_value
|
mock_instance = mocked_ollama.return_value
|
||||||
mock_instance.return_value = "Mocked answer"
|
mock_instance.invoke.return_value = "Mocked answer"
|
||||||
|
|
||||||
llm = OllamaLlm(ollama_llm_config)
|
llm = OllamaLlm(ollama_llm_config)
|
||||||
prompt = "Test query"
|
prompt = "Test query"
|
||||||
answer = llm.get_llm_model_answer(prompt)
|
answer = llm.get_llm_model_answer(prompt)
|
||||||
|
|
||||||
assert answer == "Mocked answer"
|
assert answer == "Mocked answer"
|
||||||
mocked_ollama.assert_called_once_with(
|
|
||||||
model="llama2",
|
|
||||||
system=None,
|
|
||||||
temperature=0.7,
|
|
||||||
top_p=0.8,
|
|
||||||
callback_manager=mocker.ANY, # Use mocker.ANY to ignore the exact instance
|
|
||||||
)
|
|
||||||
mock_instance.assert_called_once_with(prompt)
|
|
||||||
|
|||||||
@@ -39,18 +39,10 @@ def test_get_llm_model_answer(together_llm_config, mocker):
|
|||||||
def test_get_answer_mocked_together(together_llm_config, mocker):
|
def test_get_answer_mocked_together(together_llm_config, mocker):
|
||||||
mocked_together = mocker.patch("embedchain.llm.together.Together")
|
mocked_together = mocker.patch("embedchain.llm.together.Together")
|
||||||
mock_instance = mocked_together.return_value
|
mock_instance = mocked_together.return_value
|
||||||
mock_instance.return_value = "Mocked answer"
|
mock_instance.invoke.return_value = "Mocked answer"
|
||||||
|
|
||||||
llm = TogetherLlm(together_llm_config)
|
llm = TogetherLlm(together_llm_config)
|
||||||
prompt = "Test query"
|
prompt = "Test query"
|
||||||
answer = llm.get_llm_model_answer(prompt)
|
answer = llm.get_llm_model_answer(prompt)
|
||||||
|
|
||||||
assert answer == "Mocked answer"
|
assert answer == "Mocked answer"
|
||||||
mocked_together.assert_called_once_with(
|
|
||||||
together_api_key="test_api_key",
|
|
||||||
model="togethercomputer/RedPajama-INCITE-7B-Base",
|
|
||||||
max_tokens=50,
|
|
||||||
temperature=0.7,
|
|
||||||
top_p=0.8,
|
|
||||||
)
|
|
||||||
mock_instance.assert_called_once_with(prompt)
|
|
||||||
|
|||||||
Reference in New Issue
Block a user