Update documentation: Replace Qdrant with Supabase references

- Updated vector store provider references throughout documentation
- Changed default vector store from Qdrant to Supabase (pgvector)
- Updated configuration examples to use Supabase connection strings
- Modified navigation structure to remove qdrant-specific references
- Updated examples in mem0-with-ollama and llama-index integration
- Corrected API reference and architecture documentation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Docker Config Backup
2025-07-31 07:56:11 +02:00
parent 41cd78207a
commit 09451401cc
10 changed files with 39 additions and 39 deletions

View File

@@ -172,7 +172,7 @@ X-RateLimit-Reset: 1627849200
### Completed ✅
- Core mem0 integration
- Database connections (Neo4j, Qdrant)
- Database connections (Neo4j, Supabase)
- LLM provider support (Ollama, OpenAI)
- Configuration management

View File

@@ -10,7 +10,7 @@ iconType: "solid"
The `config` is defined as an object with two main keys:
- `vector_store`: Specifies the vector database provider and its configuration
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus", "upstash_vector", "azure_ai_search", "vertex_ai_vector_search")
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "supabase", "milvus", "upstash_vector", "azure_ai_search", "vertex_ai_vector_search")
- `config`: A nested dictionary containing provider-specific settings

View File

@@ -13,7 +13,7 @@ Mem0 includes built-in support for various popular databases. Memory can utilize
See the list of supported vector databases below.
<Note>
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis,Vectorize and in-memory vector database.
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis, Vectorize and in-memory vector database.
</Note>
<CardGroup cols={3}>
@@ -37,7 +37,7 @@ See the list of supported vector databases below.
## Usage
To utilize a vector database, you must provide a configuration to customize its usage. If no configuration is supplied, a default configuration will be applied, and `Qdrant` will be used as the vector database.
To utilize a vector database, you must provide a configuration to customize its usage. If no configuration is supplied, a default configuration will be applied, and `Supabase` (with pgvector) will be used as the vector database.
For a comprehensive list of available parameters for vector database configuration, please refer to [Config](./config).

View File

@@ -14,7 +14,7 @@ description: 'Complete development environment setup and workflow'
├── test_basic.py # Basic functionality tests
├── test_openai.py # OpenAI integration test
├── test_all_connections.py # Comprehensive connection tests
├── docker-compose.yml # Neo4j & Qdrant containers
├── docker-compose.yml # Neo4j container (Supabase is external)
├── .env # Environment variables
└── docs/ # Documentation (Mintlify)
```
@@ -24,7 +24,7 @@ description: 'Complete development environment setup and workflow'
| Component | Status | Port | Description |
|-----------|--------|------|-------------|
| Neo4j | ✅ READY | 7474/7687 | Graph memory storage |
| Qdrant | ✅ READY | 6333/6334 | Vector memory storage |
| Supabase | ✅ READY | 8000/5435 | Vector & database storage (self-hosted) |
| Ollama | ✅ READY | 11434 | Local LLM processing |
| Mem0 Core | ✅ READY | - | Memory management system v0.1.115 |

View File

@@ -12,12 +12,12 @@ graph TB
A[AI Applications] --> B[MCP Server - Port 8765]
B --> C[Memory API - Port 8080]
C --> D[Mem0 Core v0.1.115]
D --> E[Vector Store - Qdrant]
D --> E[Vector Store - Supabase]
D --> F[Graph Store - Neo4j]
D --> G[LLM Provider]
G --> H[Ollama - Port 11434]
G --> I[OpenAI/Remote APIs]
E --> J[Qdrant - Port 6333]
E --> J[Supabase - Port 8000/5435]
F --> K[Neo4j - Port 7687]
```
@@ -28,10 +28,10 @@ graph TB
- **Purpose**: Central memory management and coordination
- **Features**: Memory operations, provider abstraction, configuration management
### Vector Storage (Qdrant)
- **Port**: 6333 (REST), 6334 (gRPC)
- **Purpose**: High-performance vector search and similarity matching
- **Features**: Collections management, semantic search, embeddings storage
### Vector Storage (Supabase)
- **Port**: 8000 (API), 5435 (PostgreSQL)
- **Purpose**: High-performance vector search with pgvector and database storage
- **Features**: PostgreSQL with pgvector, semantic search, embeddings storage, relational data
### Graph Storage (Neo4j)
- **Port**: 7474 (HTTP), 7687 (Bolt)
@@ -57,13 +57,13 @@ graph TB
1. **Input**: User messages or content
2. **Processing**: LLM extracts facts and relationships
3. **Storage**:
- Facts stored as vectors in Qdrant
- Facts stored as vectors in Supabase (pgvector)
- Relationships stored as graph in Neo4j
4. **Indexing**: Content indexed for fast retrieval
### Memory Retrieval
1. **Query**: Semantic search query
2. **Vector Search**: Qdrant finds similar memories
2. **Vector Search**: Supabase finds similar memories using pgvector
3. **Graph Traversal**: Neo4j provides contextual relationships
4. **Ranking**: Combined scoring and relevance
5. **Response**: Structured memory results
@@ -74,12 +74,12 @@ graph TB
```bash
# Core Services
NEO4J_URI=bolt://localhost:7687
QDRANT_URL=http://localhost:6333
SUPABASE_URL=http://localhost:8000
OLLAMA_BASE_URL=http://localhost:11434
# Provider Selection
LLM_PROVIDER=ollama # or openai
VECTOR_STORE=qdrant
VECTOR_STORE=supabase
GRAPH_STORE=neo4j
```
@@ -87,7 +87,7 @@ GRAPH_STORE=neo4j
The system supports multiple providers through a unified interface:
- **LLM Providers**: OpenAI, Ollama, Anthropic, etc.
- **Vector Stores**: Qdrant, Pinecone, Weaviate, etc.
- **Vector Stores**: Supabase (pgvector), Qdrant, Pinecone, Weaviate, etc.
- **Graph Stores**: Neo4j, Amazon Neptune, etc.
## Security Architecture
@@ -110,7 +110,7 @@ The system supports multiple providers through a unified interface:
## Scalability Considerations
### Horizontal Scaling
- Qdrant cluster support
- Supabase horizontal scaling support
- Neo4j clustering capabilities
- Load balancing for API layer

View File

@@ -26,11 +26,10 @@ from mem0 import Memory
config = {
"vector_store": {
"provider": "qdrant",
"provider": "supabase",
"config": {
"collection_name": "test",
"host": "localhost",
"port": 6333,
"connection_string": "postgresql://supabase_admin:your_password@localhost:5435/postgres",
"collection_name": "memories",
"embedding_model_dims": 768, # Change this according to your local model's dimensions
},
},
@@ -66,7 +65,7 @@ memories = m.get_all(user_id="john")
### Key Points
- **Configuration**: The setup involves configuring the vector store, language model, and embedding model to use local resources.
- **Vector Store**: Qdrant is used as the vector store, running on localhost.
- **Vector Store**: Supabase with pgvector is used as the vector store, running on localhost.
- **Language Model**: Ollama is used as the LLM provider, with the "llama3.1:latest" model.
- **Embedding Model**: Ollama is also used for embeddings, with the "nomic-embed-text:latest" model.

View File

@@ -69,11 +69,10 @@ Set your Mem0 OSS by providing configuration details:
```python
config = {
"vector_store": {
"provider": "qdrant",
"provider": "supabase",
"config": {
"collection_name": "test_9",
"host": "localhost",
"port": 6333,
"connection_string": "postgresql://supabase_admin:your_password@localhost:5435/postgres",
"collection_name": "memories",
"embedding_model_dims": 1536, # Change this according to your local model's dimensions
},
},

View File

@@ -72,7 +72,6 @@
"group": "Database Integration",
"pages": [
"database/neo4j",
"database/qdrant",
"database/supabase"
]
},

View File

@@ -45,17 +45,16 @@ m = AsyncMemory()
<Tab title="Advanced">
If you want to run Mem0 in production, initialize using the following method:
Run Qdrant first:
Run Supabase first:
```bash
docker pull qdrant/qdrant
# Ensure you have Supabase running locally
# See https://supabase.com/docs/guides/self-hosting/docker for setup
docker run -p 6333:6333 -p 6334:6334 \
-v $(pwd)/qdrant_storage:/qdrant/storage:z \
qdrant/qdrant
docker compose up -d
```
Then, instantiate memory with qdrant server:
Then, instantiate memory with Supabase server:
```python
import os
@@ -65,10 +64,10 @@ os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"vector_store": {
"provider": "qdrant",
"provider": "supabase",
"config": {
"host": "localhost",
"port": 6333,
"connection_string": "postgresql://supabase_admin:your_password@localhost:5435/postgres",
"collection_name": "memories",
}
},
}

View File

@@ -7,7 +7,7 @@ description: 'Get your Mem0 Memory System running in under 5 minutes'
<CardGroup cols={2}>
<Card title="Docker & Docker Compose" icon="docker">
Required for Neo4j and Qdrant containers
Required for Neo4j container (Supabase already running)
</Card>
<Card title="Python 3.10+" icon="python">
For the mem0 core system and API
@@ -19,9 +19,13 @@ description: 'Get your Mem0 Memory System running in under 5 minutes'
### Step 1: Start Database Services
```bash
docker compose up -d neo4j qdrant
docker compose up -d neo4j
```
<Note>
Supabase is already running as part of your existing infrastructure on the localai network.
</Note>
### Step 2: Test Your Installation
```bash