Update documentation: Replace Qdrant with Supabase references

- Updated vector store provider references throughout documentation
- Changed default vector store from Qdrant to Supabase (pgvector)
- Updated configuration examples to use Supabase connection strings
- Modified navigation structure to remove qdrant-specific references
- Updated examples in mem0-with-ollama and llama-index integration
- Corrected API reference and architecture documentation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Docker Config Backup
2025-07-31 07:56:11 +02:00
parent 41cd78207a
commit 09451401cc
10 changed files with 39 additions and 39 deletions

View File

@@ -26,11 +26,10 @@ from mem0 import Memory
config = {
"vector_store": {
"provider": "qdrant",
"provider": "supabase",
"config": {
"collection_name": "test",
"host": "localhost",
"port": 6333,
"connection_string": "postgresql://supabase_admin:your_password@localhost:5435/postgres",
"collection_name": "memories",
"embedding_model_dims": 768, # Change this according to your local model's dimensions
},
},
@@ -66,7 +65,7 @@ memories = m.get_all(user_id="john")
### Key Points
- **Configuration**: The setup involves configuring the vector store, language model, and embedding model to use local resources.
- **Vector Store**: Qdrant is used as the vector store, running on localhost.
- **Vector Store**: Supabase with pgvector is used as the vector store, running on localhost.
- **Language Model**: Ollama is used as the LLM provider, with the "llama3.1:latest" model.
- **Embedding Model**: Ollama is also used for embeddings, with the "nomic-embed-text:latest" model.