[Bug fix] Fix vertex ai integration issue (#1257)

This commit is contained in:
Deshraj Yadav
2024-02-14 11:19:32 -08:00
committed by GitHub
parent 036bf3a161
commit 0766a44ccf
7 changed files with 110 additions and 155 deletions

View File

@@ -429,11 +429,10 @@ class EmbedChain(JSONSerializable):
if dry_run:
return list(documents), metadatas, ids, 0
# Count before, to calculate a delta in the end.
chunks_before_addition = self.db.count()
# Filter out empty documents and ensure they meet the API requirements
valid_documents = [doc for doc in documents if doc and isinstance(doc, str)]
@@ -441,7 +440,7 @@ class EmbedChain(JSONSerializable):
# Chunk documents into batches of 2048 and handle each batch
# helps wigth large loads of embeddings that hit OpenAI limits
document_batches = [documents[i:i+2048] for i in range(0, len(documents), 2048)]
document_batches = [documents[i : i + 2048] for i in range(0, len(documents), 2048)]
for batch in document_batches:
try:
# Add only valid batches
@@ -452,12 +451,10 @@ class EmbedChain(JSONSerializable):
# Handle the error, e.g., by logging, retrying, or skipping
pass
count_new_chunks = self.db.count() - chunks_before_addition
print(f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}")
return list(documents), metadatas, ids, count_new_chunks
return list(documents), metadatas, ids, count_new_chunks
@staticmethod
def _format_result(results):
@@ -493,9 +490,7 @@ class EmbedChain(JSONSerializable):
:return: List of contents of the document that matched your query
:rtype: list[str]
"""
print("Query passed in config:", config)
query_config = config or self.llm.config
print("Final config:", query_config)
if where is not None:
where = where
else:
@@ -506,7 +501,6 @@ class EmbedChain(JSONSerializable):
if self.config.id is not None:
where.update({"app_id": self.config.id})
print('Number documents', query_config)
contexts = self.db.query(
input_query=input_query,
n_results=query_config.number_documents,

View File

@@ -5,7 +5,9 @@ from typing import Any, Optional
from langchain.schema import BaseMessage as LCBaseMessage
from embedchain.config import BaseLlmConfig
from embedchain.config.llm.base import DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE, DOCS_SITE_PROMPT_TEMPLATE
from embedchain.config.llm.base import (DEFAULT_PROMPT,
DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
DOCS_SITE_PROMPT_TEMPLATE)
from embedchain.helpers.json_serializable import JSONSerializable
from embedchain.memory.base import ChatHistory
from embedchain.memory.message import ChatMessage

View File

@@ -2,6 +2,7 @@ import json
import os
from typing import Any, Callable, Dict, Optional, Type, Union
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import BaseMessage, HumanMessage, SystemMessage
from langchain_core.tools import BaseTool
from langchain_openai import ChatOpenAI
@@ -41,8 +42,6 @@ class OpenAILlm(BaseLlm):
if config.top_p:
kwargs["model_kwargs"]["top_p"] = config.top_p
if config.stream:
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
else:

View File

@@ -2,6 +2,9 @@ import importlib
import logging
from typing import Optional
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_google_vertexai import ChatVertexAI
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@@ -24,13 +27,17 @@ class VertexAILlm(BaseLlm):
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
from langchain_community.chat_models import ChatVertexAI
chat = ChatVertexAI(temperature=config.temperature, model=config.model)
if config.top_p and config.top_p != 1:
logging.warning("Config option `top_p` is not supported by this model.")
messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt)
return chat(messages).content
if config.stream:
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
llm = ChatVertexAI(
temperature=config.temperature, model=config.model, callbacks=callbacks, streaming=config.stream
)
else:
llm = ChatVertexAI(temperature=config.temperature, model=config.model)
return llm.invoke(messages).content