[Bug fix] Fix vertex ai integration issue (#1257)
This commit is contained in:
@@ -429,11 +429,10 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
if dry_run:
|
||||
return list(documents), metadatas, ids, 0
|
||||
|
||||
|
||||
# Count before, to calculate a delta in the end.
|
||||
chunks_before_addition = self.db.count()
|
||||
|
||||
|
||||
# Filter out empty documents and ensure they meet the API requirements
|
||||
valid_documents = [doc for doc in documents if doc and isinstance(doc, str)]
|
||||
|
||||
@@ -441,7 +440,7 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
# Chunk documents into batches of 2048 and handle each batch
|
||||
# helps wigth large loads of embeddings that hit OpenAI limits
|
||||
document_batches = [documents[i:i+2048] for i in range(0, len(documents), 2048)]
|
||||
document_batches = [documents[i : i + 2048] for i in range(0, len(documents), 2048)]
|
||||
for batch in document_batches:
|
||||
try:
|
||||
# Add only valid batches
|
||||
@@ -452,12 +451,10 @@ class EmbedChain(JSONSerializable):
|
||||
# Handle the error, e.g., by logging, retrying, or skipping
|
||||
pass
|
||||
|
||||
|
||||
count_new_chunks = self.db.count() - chunks_before_addition
|
||||
print(f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}")
|
||||
|
||||
return list(documents), metadatas, ids, count_new_chunks
|
||||
|
||||
return list(documents), metadatas, ids, count_new_chunks
|
||||
|
||||
@staticmethod
|
||||
def _format_result(results):
|
||||
@@ -493,9 +490,7 @@ class EmbedChain(JSONSerializable):
|
||||
:return: List of contents of the document that matched your query
|
||||
:rtype: list[str]
|
||||
"""
|
||||
print("Query passed in config:", config)
|
||||
query_config = config or self.llm.config
|
||||
print("Final config:", query_config)
|
||||
if where is not None:
|
||||
where = where
|
||||
else:
|
||||
@@ -506,7 +501,6 @@ class EmbedChain(JSONSerializable):
|
||||
if self.config.id is not None:
|
||||
where.update({"app_id": self.config.id})
|
||||
|
||||
print('Number documents', query_config)
|
||||
contexts = self.db.query(
|
||||
input_query=input_query,
|
||||
n_results=query_config.number_documents,
|
||||
|
||||
@@ -5,7 +5,9 @@ from typing import Any, Optional
|
||||
from langchain.schema import BaseMessage as LCBaseMessage
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.config.llm.base import DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE, DOCS_SITE_PROMPT_TEMPLATE
|
||||
from embedchain.config.llm.base import (DEFAULT_PROMPT,
|
||||
DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
|
||||
DOCS_SITE_PROMPT_TEMPLATE)
|
||||
from embedchain.helpers.json_serializable import JSONSerializable
|
||||
from embedchain.memory.base import ChatHistory
|
||||
from embedchain.memory.message import ChatMessage
|
||||
|
||||
@@ -2,6 +2,7 @@ import json
|
||||
import os
|
||||
from typing import Any, Callable, Dict, Optional, Type, Union
|
||||
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.schema import BaseMessage, HumanMessage, SystemMessage
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_openai import ChatOpenAI
|
||||
@@ -41,8 +42,6 @@ class OpenAILlm(BaseLlm):
|
||||
if config.top_p:
|
||||
kwargs["model_kwargs"]["top_p"] = config.top_p
|
||||
if config.stream:
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
|
||||
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
|
||||
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
|
||||
else:
|
||||
|
||||
@@ -2,6 +2,9 @@ import importlib
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain_google_vertexai import ChatVertexAI
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
@@ -24,13 +27,17 @@ class VertexAILlm(BaseLlm):
|
||||
|
||||
@staticmethod
|
||||
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
|
||||
from langchain_community.chat_models import ChatVertexAI
|
||||
|
||||
chat = ChatVertexAI(temperature=config.temperature, model=config.model)
|
||||
|
||||
if config.top_p and config.top_p != 1:
|
||||
logging.warning("Config option `top_p` is not supported by this model.")
|
||||
|
||||
messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt)
|
||||
|
||||
return chat(messages).content
|
||||
if config.stream:
|
||||
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
|
||||
llm = ChatVertexAI(
|
||||
temperature=config.temperature, model=config.model, callbacks=callbacks, streaming=config.stream
|
||||
)
|
||||
else:
|
||||
llm = ChatVertexAI(temperature=config.temperature, model=config.model)
|
||||
|
||||
return llm.invoke(messages).content
|
||||
|
||||
Reference in New Issue
Block a user