Add Amazon Neptune Analytics graph_store configuration & integration (#2949)

This commit is contained in:
Andrew Carbonetto
2025-07-04 16:26:21 -07:00
committed by GitHub
parent 7484eed4b2
commit 05c404d8d3
12 changed files with 1823 additions and 5 deletions

0
mem0/graphs/__init__.py Normal file
View File

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import Optional, Union
from pydantic import BaseModel, Field, field_validator, model_validator
@@ -41,9 +41,43 @@ class MemgraphConfig(BaseModel):
return values
class NeptuneConfig(BaseModel):
endpoint: Optional[str] = (
Field(
None,
description="Endpoint to connect to a Neptune Analytics Server as neptune-graph://<graphid>",
),
)
base_label: Optional[bool] = Field(None, description="Whether to use base node label __Entity__ for all entities")
@model_validator(mode="before")
def check_host_port_or_path(cls, values):
endpoint = values.get("endpoint")
if not endpoint:
raise ValueError("Please provide 'endpoint' with the format as 'neptune-graph://<graphid>'.")
if endpoint.startswith("neptune-db://"):
raise ValueError("neptune-db server is not yet supported")
elif endpoint.startswith("neptune-graph://"):
# This is a Neptune Analytics Graph
graph_identifier = endpoint.replace("neptune-graph://", "")
if not graph_identifier.startswith("g-"):
raise ValueError("Provide a valid 'graph_identifier'.")
values["graph_identifier"] = graph_identifier
return values
else:
raise ValueError(
"You must provide an endpoint to create a NeptuneServer as either neptune-db://<endpoint> or neptune-graph://<graphid>"
)
class GraphStoreConfig(BaseModel):
provider: str = Field(description="Provider of the data store (e.g., 'neo4j')", default="neo4j")
config: Neo4jConfig = Field(description="Configuration for the specific data store", default=None)
provider: str = Field(
description="Provider of the data store (e.g., 'neo4j', 'memgraph', 'neptune')",
default="neo4j",
)
config: Union[Neo4jConfig, MemgraphConfig, NeptuneConfig] = Field(
description="Configuration for the specific data store", default=None
)
llm: Optional[LlmConfig] = Field(description="LLM configuration for querying the graph store", default=None)
custom_prompt: Optional[str] = Field(
description="Custom prompt to fetch entities from the given text", default=None
@@ -56,5 +90,7 @@ class GraphStoreConfig(BaseModel):
return Neo4jConfig(**v.model_dump())
elif provider == "memgraph":
return MemgraphConfig(**v.model_dump())
elif provider == "neptune":
return NeptuneConfig(**v.model_dump())
else:
raise ValueError(f"Unsupported graph store provider: {provider}")

View File

410
mem0/graphs/neptune/base.py Normal file
View File

@@ -0,0 +1,410 @@
import logging
from abc import ABC, abstractmethod
from mem0.memory.utils import format_entities
try:
from rank_bm25 import BM25Okapi
except ImportError:
raise ImportError("rank_bm25 is not installed. Please install it using pip install rank-bm25")
from mem0.graphs.tools import (
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
DELETE_MEMORY_TOOL_GRAPH,
EXTRACT_ENTITIES_STRUCT_TOOL,
EXTRACT_ENTITIES_TOOL,
RELATIONS_STRUCT_TOOL,
RELATIONS_TOOL,
)
from mem0.graphs.utils import EXTRACT_RELATIONS_PROMPT, get_delete_messages
from mem0.utils.factory import EmbedderFactory, LlmFactory
logger = logging.getLogger(__name__)
class NeptuneBase(ABC):
"""
Abstract base class for neptune (neptune analytics and neptune db) calls using OpenCypher
to store/retrieve data
"""
@staticmethod
def _create_embedding_model(config):
"""
:return: the Embedder model used for memory store
"""
return EmbedderFactory.create(
config.embedder.provider,
config.embedder.config,
{"enable_embeddings": True},
)
@staticmethod
def _create_llm(config, llm_provider):
"""
:return: the llm model used for memory store
"""
return LlmFactory.create(llm_provider, config.llm.config)
def add(self, data, filters):
"""
Adds data to the graph.
Args:
data (str): The data to add to the graph.
filters (dict): A dictionary containing filters to be applied during the addition.
"""
entity_type_map = self._retrieve_nodes_from_data(data, filters)
to_be_added = self._establish_nodes_relations_from_data(data, filters, entity_type_map)
search_output = self._search_graph_db(node_list=list(entity_type_map.keys()), filters=filters)
to_be_deleted = self._get_delete_entities_from_search_output(search_output, data, filters)
deleted_entities = self._delete_entities(to_be_deleted, filters["user_id"])
added_entities = self._add_entities(to_be_added, filters["user_id"], entity_type_map)
return {"deleted_entities": deleted_entities, "added_entities": added_entities}
def _retrieve_nodes_from_data(self, data, filters):
"""
Extract all entities mentioned in the query.
"""
_tools = [EXTRACT_ENTITIES_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [EXTRACT_ENTITIES_STRUCT_TOOL]
search_results = self.llm.generate_response(
messages=[
{
"role": "system",
"content": f"You are a smart assistant who understands entities and their types in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source entity. Extract all the entities from the text. ***DO NOT*** answer the question itself if the given text is a question.",
},
{"role": "user", "content": data},
],
tools=_tools,
)
entity_type_map = {}
try:
for tool_call in search_results["tool_calls"]:
if tool_call["name"] != "extract_entities":
continue
for item in tool_call["arguments"]["entities"]:
entity_type_map[item["entity"]] = item["entity_type"]
except Exception as e:
logger.exception(
f"Error in search tool: {e}, llm_provider={self.llm_provider}, search_results={search_results}"
)
entity_type_map = {k.lower().replace(" ", "_"): v.lower().replace(" ", "_") for k, v in entity_type_map.items()}
return entity_type_map
def _establish_nodes_relations_from_data(self, data, filters, entity_type_map):
"""
Establish relations among the extracted nodes.
"""
if self.config.graph_store.custom_prompt:
messages = [
{
"role": "system",
"content": EXTRACT_RELATIONS_PROMPT.replace("USER_ID", filters["user_id"]).replace(
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
),
},
{"role": "user", "content": data},
]
else:
messages = [
{
"role": "system",
"content": EXTRACT_RELATIONS_PROMPT.replace("USER_ID", filters["user_id"]),
},
{
"role": "user",
"content": f"List of entities: {list(entity_type_map.keys())}. \n\nText: {data}",
},
]
_tools = [RELATIONS_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [RELATIONS_STRUCT_TOOL]
extracted_entities = self.llm.generate_response(
messages=messages,
tools=_tools,
)
entities = []
if extracted_entities["tool_calls"]:
entities = extracted_entities["tool_calls"][0]["arguments"]["entities"]
entities = self._remove_spaces_from_entities(entities)
logger.debug(f"Extracted entities: {entities}")
return entities
def _remove_spaces_from_entities(self, entity_list):
for item in entity_list:
item["source"] = item["source"].lower().replace(" ", "_")
item["relationship"] = item["relationship"].lower().replace(" ", "_")
item["destination"] = item["destination"].lower().replace(" ", "_")
return entity_list
def _get_delete_entities_from_search_output(self, search_output, data, filters):
"""
Get the entities to be deleted from the search output.
"""
search_output_string = format_entities(search_output)
system_prompt, user_prompt = get_delete_messages(search_output_string, data, filters["user_id"])
_tools = [DELETE_MEMORY_TOOL_GRAPH]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
]
memory_updates = self.llm.generate_response(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
tools=_tools,
)
to_be_deleted = []
for item in memory_updates["tool_calls"]:
if item["name"] == "delete_graph_memory":
to_be_deleted.append(item["arguments"])
# in case if it is not in the correct format
to_be_deleted = self._remove_spaces_from_entities(to_be_deleted)
logger.debug(f"Deleted relationships: {to_be_deleted}")
return to_be_deleted
def _delete_entities(self, to_be_deleted, user_id):
"""
Delete the entities from the graph.
"""
results = []
for item in to_be_deleted:
source = item["source"]
destination = item["destination"]
relationship = item["relationship"]
# Delete the specific relationship between nodes
cypher, params = self._delete_entities_cypher(source, destination, relationship, user_id)
result = self.graph.query(cypher, params=params)
results.append(result)
return results
@abstractmethod
def _delete_entities_cypher(self, source, destination, relationship, user_id):
"""
Returns the OpenCypher query and parameters for deleting entities in the graph DB
"""
pass
def _add_entities(self, to_be_added, user_id, entity_type_map):
"""
Add the new entities to the graph. Merge the nodes if they already exist.
"""
results = []
for item in to_be_added:
# entities
source = item["source"]
destination = item["destination"]
relationship = item["relationship"]
# types
source_type = entity_type_map.get(source, "__User__")
destination_type = entity_type_map.get(destination, "__User__")
# embeddings
source_embedding = self.embedding_model.embed(source)
dest_embedding = self.embedding_model.embed(destination)
# search for the nodes with the closest embeddings
source_node_search_result = self._search_source_node(source_embedding, user_id, threshold=0.9)
destination_node_search_result = self._search_destination_node(dest_embedding, user_id, threshold=0.9)
cypher, params = self._add_entities_cypher(
source_node_search_result,
source,
source_embedding,
source_type,
destination_node_search_result,
destination,
dest_embedding,
destination_type,
relationship,
user_id,
)
result = self.graph.query(cypher, params=params)
results.append(result)
return results
@abstractmethod
def _add_entities_cypher(
self,
source_node_list,
source,
source_embedding,
source_type,
destination_node_list,
destination,
dest_embedding,
destination_type,
relationship,
user_id,
):
"""
Returns the OpenCypher query and parameters for adding entities in the graph DB
"""
pass
def search(self, query, filters, limit=100):
"""
Search for memories and related graph data.
Args:
query (str): Query to search for.
filters (dict): A dictionary containing filters to be applied during the search.
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
Returns:
dict: A dictionary containing:
- "contexts": List of search results from the base data store.
- "entities": List of related graph data based on the query.
"""
entity_type_map = self._retrieve_nodes_from_data(query, filters)
search_output = self._search_graph_db(node_list=list(entity_type_map.keys()), filters=filters)
if not search_output:
return []
search_outputs_sequence = [
[item["source"], item["relationship"], item["destination"]] for item in search_output
]
bm25 = BM25Okapi(search_outputs_sequence)
tokenized_query = query.split(" ")
reranked_results = bm25.get_top_n(tokenized_query, search_outputs_sequence, n=5)
search_results = []
for item in reranked_results:
search_results.append({"source": item[0], "relationship": item[1], "destination": item[2]})
return search_results
def _search_source_node(self, source_embedding, user_id, threshold=0.9):
cypher, params = self._search_source_node_cypher(source_embedding, user_id, threshold)
result = self.graph.query(cypher, params=params)
return result
@abstractmethod
def _search_source_node_cypher(self, source_embedding, user_id, threshold):
"""
Returns the OpenCypher query and parameters to search for source nodes
"""
pass
def _search_destination_node(self, destination_embedding, user_id, threshold=0.9):
cypher, params = self._search_destination_node_cypher(destination_embedding, user_id, threshold)
result = self.graph.query(cypher, params=params)
return result
@abstractmethod
def _search_destination_node_cypher(self, destination_embedding, user_id, threshold):
"""
Returns the OpenCypher query and parameters to search for destination nodes
"""
pass
def delete_all(self, filters):
cypher, params = self._delete_all_cypher(filters)
self.graph.query(cypher, params=params)
@abstractmethod
def _delete_all_cypher(self, filters):
"""
Returns the OpenCypher query and parameters to delete all edges/nodes in the memory store
"""
pass
def get_all(self, filters, limit=100):
"""
Retrieves all nodes and relationships from the graph database based on filtering criteria.
Args:
filters (dict): A dictionary containing filters to be applied during the retrieval.
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
Returns:
list: A list of dictionaries, each containing:
- 'contexts': The base data store response for each memory.
- 'entities': A list of strings representing the nodes and relationships
"""
# return all nodes and relationships
query, params = self._get_all_cypher(filters, limit)
results = self.graph.query(query, params=params)
final_results = []
for result in results:
final_results.append(
{
"source": result["source"],
"relationship": result["relationship"],
"target": result["target"],
}
)
logger.debug(f"Retrieved {len(final_results)} relationships")
return final_results
@abstractmethod
def _get_all_cypher(self, filters, limit):
"""
Returns the OpenCypher query and parameters to get all edges/nodes in the memory store
"""
pass
def _search_graph_db(self, node_list, filters, limit=100):
"""
Search similar nodes among and their respective incoming and outgoing relations.
"""
result_relations = []
for node in node_list:
n_embedding = self.embedding_model.embed(node)
cypher_query, params = self._search_graph_db_cypher(n_embedding, filters, limit)
ans = self.graph.query(cypher_query, params=params)
result_relations.extend(ans)
return result_relations
@abstractmethod
def _search_graph_db_cypher(self, n_embedding, filters, limit):
"""
Returns the OpenCypher query and parameters to search for similar nodes in the memory store
"""
pass
# Reset is not defined in base.py
def reset(self):
"""
Reset the graph by clearing all nodes and relationships.
link: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/neptune-graph/client/reset_graph.html
"""
logger.warning("Clearing graph...")
graph_id = self.graph.graph_identifier
self.graph.client.reset_graph(
graphIdentifier=graph_id,
skipSnapshot=True,
)
waiter = self.graph.client.get_waiter("graph_available")
waiter.wait(graphIdentifier=graph_id, WaiterConfig={"Delay": 10, "MaxAttempts": 60})

372
mem0/graphs/neptune/main.py Normal file
View File

@@ -0,0 +1,372 @@
import logging
from .base import NeptuneBase
try:
from langchain_aws import NeptuneAnalyticsGraph
except ImportError:
raise ImportError("langchain_aws is not installed. Please install it using 'make install_all'.")
logger = logging.getLogger(__name__)
class MemoryGraph(NeptuneBase):
def __init__(self, config):
self.config = config
self.graph = None
endpoint = self.config.graph_store.config.endpoint
if endpoint and endpoint.startswith("neptune-graph://"):
graph_identifier = endpoint.replace("neptune-graph://", "")
self.graph = NeptuneAnalyticsGraph(graph_identifier)
if not self.graph:
raise ValueError("Unable to create a Neptune client: missing 'endpoint' in config")
self.node_label = ":`__Entity__`" if self.config.graph_store.config.base_label else ""
self.embedding_model = NeptuneBase._create_embedding_model(self.config)
self.llm_provider = "openai_structured"
if self.config.llm.provider:
self.llm_provider = self.config.llm.provider
if self.config.graph_store.llm:
self.llm_provider = self.config.graph_store.llm.provider
self.llm = NeptuneBase._create_llm(self.config, self.llm_provider)
self.user_id = None
self.threshold = 0.7
def _delete_entities_cypher(self, source, destination, relationship, user_id):
"""
Returns the OpenCypher query and parameters for deleting entities in the graph DB
:param source: source node
:param destination: destination node
:param relationship: relationship label
:param user_id: user_id to use
:return: str, dict
"""
cypher = f"""
MATCH (n {self.node_label} {{name: $source_name, user_id: $user_id}})
-[r:{relationship}]->
(m {self.node_label} {{name: $dest_name, user_id: $user_id}})
DELETE r
RETURN
n.name AS source,
m.name AS target,
type(r) AS relationship
"""
params = {
"source_name": source,
"dest_name": destination,
"user_id": user_id,
}
logger.debug(f"_delete_entities\n query={cypher}")
return cypher, params
def _add_entities_cypher(
self,
source_node_list,
source,
source_embedding,
source_type,
destination_node_list,
destination,
dest_embedding,
destination_type,
relationship,
user_id,
):
"""
Returns the OpenCypher query and parameters for adding entities in the graph DB
:param source_node_list: list of source nodes
:param source: source node name
:param source_embedding: source node embedding
:param source_type: source node label
:param destination_node_list: list of dest nodes
:param destination: destination name
:param dest_embedding: destination embedding
:param destination_type: destination node label
:param relationship: relationship label
:param user_id: user id to use
:return: str, dict
"""
source_label = self.node_label if self.node_label else f":`{source_type}`"
source_extra_set = f", source:`{source_type}`" if self.node_label else ""
destination_label = self.node_label if self.node_label else f":`{destination_type}`"
destination_extra_set = f", destination:`{destination_type}`" if self.node_label else ""
# Refactor this code with the graph_memory.py implementation
if not destination_node_list and source_node_list:
cypher = f"""
MATCH (source)
WHERE id(source) = $source_id
SET source.mentions = coalesce(source.mentions, 0) + 1
WITH source
MERGE (destination {destination_label} {{name: $destination_name, user_id: $user_id}})
ON CREATE SET
destination.created = timestamp(),
destination.mentions = 1
{destination_extra_set}
ON MATCH SET
destination.mentions = coalesce(destination.mentions, 0) + 1
WITH source, destination, $dest_embedding as dest_embedding
CALL neptune.algo.vectors.upsert(destination, dest_embedding)
WITH source, destination
MERGE (source)-[r:{relationship}]->(destination)
ON CREATE SET
r.created = timestamp(),
r.mentions = 1
ON MATCH SET
r.mentions = coalesce(r.mentions, 0) + 1
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
"""
params = {
"source_id": source_node_list[0]["id(source_candidate)"],
"destination_name": destination,
"dest_embedding": dest_embedding,
"user_id": user_id,
}
elif destination_node_list and not source_node_list:
cypher = f"""
MATCH (destination)
WHERE id(destination) = $destination_id
SET destination.mentions = coalesce(destination.mentions, 0) + 1
WITH destination
MERGE (source {source_label} {{name: $source_name, user_id: $user_id}})
ON CREATE SET
source.created = timestamp(),
source.mentions = 1
{source_extra_set}
ON MATCH SET
source.mentions = coalesce(source.mentions, 0) + 1
WITH source, destination, $source_embedding as source_embedding
CALL neptune.algo.vectors.upsert(source, source_embedding)
WITH source, destination
MERGE (source)-[r:{relationship}]->(destination)
ON CREATE SET
r.created = timestamp(),
r.mentions = 1
ON MATCH SET
r.mentions = coalesce(r.mentions, 0) + 1
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
"""
params = {
"destination_id": destination_node_list[0]["id(destination_candidate)"],
"source_name": source,
"source_embedding": source_embedding,
"user_id": user_id,
}
elif source_node_list and destination_node_list:
cypher = f"""
MATCH (source)
WHERE id(source) = $source_id
SET source.mentions = coalesce(source.mentions, 0) + 1
WITH source
MATCH (destination)
WHERE id(destination) = $destination_id
SET destination.mentions = coalesce(destination.mentions) + 1
MERGE (source)-[r:{relationship}]->(destination)
ON CREATE SET
r.created_at = timestamp(),
r.updated_at = timestamp(),
r.mentions = 1
ON MATCH SET r.mentions = coalesce(r.mentions, 0) + 1
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
"""
params = {
"source_id": source_node_list[0]["id(source_candidate)"],
"destination_id": destination_node_list[0]["id(destination_candidate)"],
"user_id": user_id,
}
else:
cypher = f"""
MERGE (n {source_label} {{name: $source_name, user_id: $user_id}})
ON CREATE SET n.created = timestamp(),
n.mentions = 1
{source_extra_set}
ON MATCH SET n.mentions = coalesce(n.mentions, 0) + 1
WITH n, $source_embedding as source_embedding
CALL neptune.algo.vectors.upsert(n, source_embedding)
WITH n
MERGE (m {destination_label} {{name: $dest_name, user_id: $user_id}})
ON CREATE SET m.created = timestamp(),
m.mentions = 1
{destination_extra_set}
ON MATCH SET m.mentions = coalesce(m.mentions, 0) + 1
WITH n, m, $dest_embedding as dest_embedding
CALL neptune.algo.vectors.upsert(m, dest_embedding)
WITH n, m
MERGE (n)-[rel:{relationship}]->(m)
ON CREATE SET rel.created = timestamp(), rel.mentions = 1
ON MATCH SET rel.mentions = coalesce(rel.mentions, 0) + 1
RETURN n.name AS source, type(rel) AS relationship, m.name AS target
"""
params = {
"source_name": source,
"dest_name": destination,
"source_embedding": source_embedding,
"dest_embedding": dest_embedding,
"user_id": user_id,
}
logger.debug(
f"_add_entities:\n destination_node_search_result={destination_node_list}\n source_node_search_result={source_node_list}\n query={cypher}"
)
return cypher, params
def _search_source_node_cypher(self, source_embedding, user_id, threshold):
"""
Returns the OpenCypher query and parameters to search for source nodes
:param source_embedding: source vector
:param user_id: user_id to use
:param threshold: the threshold for similarity
:return: str, dict
"""
cypher = f"""
MATCH (source_candidate {self.node_label})
WHERE source_candidate.user_id = $user_id
WITH source_candidate, $source_embedding as v_embedding
CALL neptune.algo.vectors.distanceByEmbedding(
v_embedding,
source_candidate,
{{metric:"CosineSimilarity"}}
) YIELD distance
WITH source_candidate, distance AS cosine_similarity
WHERE cosine_similarity >= $threshold
WITH source_candidate, cosine_similarity
ORDER BY cosine_similarity DESC
LIMIT 1
RETURN id(source_candidate), cosine_similarity
"""
params = {
"source_embedding": source_embedding,
"user_id": user_id,
"threshold": threshold,
}
logger.debug(f"_search_source_node\n query={cypher}")
return cypher, params
def _search_destination_node_cypher(self, destination_embedding, user_id, threshold):
"""
Returns the OpenCypher query and parameters to search for destination nodes
:param source_embedding: source vector
:param user_id: user_id to use
:param threshold: the threshold for similarity
:return: str, dict
"""
cypher = f"""
MATCH (destination_candidate {self.node_label})
WHERE destination_candidate.user_id = $user_id
WITH destination_candidate, $destination_embedding as v_embedding
CALL neptune.algo.vectors.distanceByEmbedding(
v_embedding,
destination_candidate,
{{metric:"CosineSimilarity"}}
) YIELD distance
WITH destination_candidate, distance AS cosine_similarity
WHERE cosine_similarity >= $threshold
WITH destination_candidate, cosine_similarity
ORDER BY cosine_similarity DESC
LIMIT 1
RETURN id(destination_candidate), cosine_similarity
"""
params = {
"destination_embedding": destination_embedding,
"user_id": user_id,
"threshold": threshold,
}
logger.debug(f"_search_destination_node\n query={cypher}")
return cypher, params
def _delete_all_cypher(self, filters):
"""
Returns the OpenCypher query and parameters to delete all edges/nodes in the memory store
:param filters: search filters
:return: str, dict
"""
cypher = f"""
MATCH (n {self.node_label} {{user_id: $user_id}})
DETACH DELETE n
"""
params = {"user_id": filters["user_id"]}
logger.debug(f"delete_all query={cypher}")
return cypher, params
def _get_all_cypher(self, filters, limit):
"""
Returns the OpenCypher query and parameters to get all edges/nodes in the memory store
:param filters: search filters
:param limit: return limit
:return: str, dict
"""
cypher = f"""
MATCH (n {self.node_label} {{user_id: $user_id}})-[r]->(m {self.node_label} {{user_id: $user_id}})
RETURN n.name AS source, type(r) AS relationship, m.name AS target
LIMIT $limit
"""
params = {"user_id": filters["user_id"], "limit": limit}
return cypher, params
def _search_graph_db_cypher(self, n_embedding, filters, limit):
"""
Returns the OpenCypher query and parameters to search for similar nodes in the memory store
:param n_embedding: node vector
:param filters: search filters
:param limit: return limit
:return: str, dict
"""
cypher_query = f"""
MATCH (n {self.node_label})
WHERE n.user_id = $user_id
WITH n, $n_embedding as n_embedding
CALL neptune.algo.vectors.distanceByEmbedding(
n_embedding,
n,
{{metric:"CosineSimilarity"}}
) YIELD distance
WITH n, distance as similarity
WHERE similarity >= $threshold
CALL {{
WITH n
MATCH (n)-[r]->(m)
RETURN n.name AS source, id(n) AS source_id, type(r) AS relationship, id(r) AS relation_id, m.name AS destination, id(m) AS destination_id
UNION ALL
WITH n
MATCH (m)-[r]->(n)
RETURN m.name AS source, id(m) AS source_id, type(r) AS relationship, id(r) AS relation_id, n.name AS destination, id(n) AS destination_id
}}
WITH distinct source, source_id, relationship, relation_id, destination, destination_id, similarity
RETURN source, source_id, relationship, relation_id, destination, destination_id, similarity
ORDER BY similarity DESC
LIMIT $limit
"""
params = {
"n_embedding": n_embedding,
"threshold": self.threshold,
"user_id": filters["user_id"],
"limit": limit,
}
logger.debug(f"_search_graph_db\n query={cypher_query}")
return cypher_query, params