DeepSeek Integration (#2173)

This commit is contained in:
Dev Khant
2025-01-23 17:45:03 +05:30
committed by GitHub
parent e1b527b73f
commit 04bbad67ac
9 changed files with 258 additions and 1 deletions

View File

@@ -33,6 +33,8 @@ class BaseLlmConfig(ABC):
azure_kwargs: Optional[AzureConfig] = {},
# AzureOpenAI specific
http_client_proxies: Optional[Union[Dict, str]] = None,
# DeepSeek specific
deepseek_base_url: Optional[str] = None,
):
"""
Initializes a configuration class instance for the LLM.
@@ -69,6 +71,8 @@ class BaseLlmConfig(ABC):
:type azure_kwargs: Optional[Dict[str, Any]], defaults a dict inside init
:param http_client_proxies: The proxy server(s) settings used to create self.http_client, defaults to None
:type http_client_proxies: Optional[Dict | str], optional
:param deepseek_base_url: DeepSeek base URL to be use, defaults to None
:type deepseek_base_url: Optional[str], optional
"""
self.model = model
@@ -92,5 +96,8 @@ class BaseLlmConfig(ABC):
# Ollama specific
self.ollama_base_url = ollama_base_url
# DeepSeek specific
self.deepseek_base_url = deepseek_base_url
# AzureOpenAI specific
self.azure_kwargs = AzureConfig(**azure_kwargs) or {}

View File

@@ -22,6 +22,7 @@ class LlmConfig(BaseModel):
"openai_structured",
"azure_openai_structured",
"gemini",
"deepseek",
):
return v
else:

84
mem0/llms/deepseek.py Normal file
View File

@@ -0,0 +1,84 @@
import json
import os
from typing import Dict, List, Optional
from openai import OpenAI
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class DeepSeekLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "deepseek-chat"
api_key = self.config.api_key or os.getenv("DEEPSEEK_API_KEY")
base_url = self.config.deepseek_base_url or os.getenv("DEEPSEEK_API_BASE") or "https://api.deepseek.com"
self.client = OpenAI(api_key=api_key, base_url=base_url)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
return response.choices[0].message.content
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using DeepSeek.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if tools:
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.chat.completions.create(**params)
return self._parse_response(response, tools)

View File

@@ -23,6 +23,7 @@ class LlmFactory:
"anthropic": "mem0.llms.anthropic.AnthropicLLM",
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM",
"gemini": "mem0.llms.gemini.GeminiLLM",
"deepseek": "mem0.llms.deepseek.DeepSeekLLM",
}
@classmethod