- Complete fact-based memory API with mem0-inspired approach - Individual fact extraction and deduplication - ADD/UPDATE/DELETE memory actions - Precision search with 0.86+ similarity scores - MCP server for Claude Code integration - Neo4j graph relationships and PostgreSQL vector storage - Comprehensive documentation with architecture and API docs - Matrix communication integration - Production-ready Docker setup with Ollama and Supabase 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
186 lines
6.9 KiB
Python
186 lines
6.9 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Populate LangMem with test data for Supabase web UI viewing
|
|
"""
|
|
|
|
import asyncio
|
|
import httpx
|
|
import json
|
|
from datetime import datetime
|
|
|
|
# Configuration
|
|
API_BASE_URL = "http://localhost:8765"
|
|
API_KEY = "langmem_api_key_2025"
|
|
|
|
# Test memories to store
|
|
test_memories = [
|
|
{
|
|
"content": "Claude Code is an AI-powered CLI tool that helps with software development tasks. It can read files, search codebases, and generate code.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_1",
|
|
"metadata": {
|
|
"category": "tools",
|
|
"subcategory": "ai_development",
|
|
"importance": "high",
|
|
"tags": ["claude", "ai", "cli", "development"]
|
|
}
|
|
},
|
|
{
|
|
"content": "FastAPI is a modern, fast web framework for building APIs with Python. It provides automatic API documentation and type hints.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_1",
|
|
"metadata": {
|
|
"category": "frameworks",
|
|
"subcategory": "python_web",
|
|
"importance": "medium",
|
|
"tags": ["fastapi", "python", "web", "api"]
|
|
}
|
|
},
|
|
{
|
|
"content": "Docker containers provide lightweight virtualization for applications. They package software with all dependencies for consistent deployment.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_2",
|
|
"metadata": {
|
|
"category": "devops",
|
|
"subcategory": "containerization",
|
|
"importance": "high",
|
|
"tags": ["docker", "containers", "devops", "deployment"]
|
|
}
|
|
},
|
|
{
|
|
"content": "PostgreSQL with pgvector extension enables vector similarity search for embeddings. This is useful for semantic search and AI applications.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_2",
|
|
"metadata": {
|
|
"category": "databases",
|
|
"subcategory": "vector_search",
|
|
"importance": "high",
|
|
"tags": ["postgresql", "pgvector", "embeddings", "search"]
|
|
}
|
|
},
|
|
{
|
|
"content": "N8N is an open-source workflow automation tool that connects different services and APIs. It provides a visual interface for building workflows.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_3",
|
|
"metadata": {
|
|
"category": "automation",
|
|
"subcategory": "workflow_tools",
|
|
"importance": "medium",
|
|
"tags": ["n8n", "automation", "workflow", "integration"]
|
|
}
|
|
},
|
|
{
|
|
"content": "Ollama runs large language models locally on your machine. It supports models like Llama, Mistral, and provides embedding capabilities.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_3",
|
|
"metadata": {
|
|
"category": "ai",
|
|
"subcategory": "local_models",
|
|
"importance": "high",
|
|
"tags": ["ollama", "llm", "local", "embeddings"]
|
|
}
|
|
},
|
|
{
|
|
"content": "Supabase is an open-source Firebase alternative that provides database, authentication, and real-time subscriptions with PostgreSQL.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_4",
|
|
"metadata": {
|
|
"category": "backend",
|
|
"subcategory": "baas",
|
|
"importance": "medium",
|
|
"tags": ["supabase", "database", "authentication", "backend"]
|
|
}
|
|
},
|
|
{
|
|
"content": "Neo4j is a graph database that stores data as nodes and relationships. It's excellent for modeling complex relationships and network data.",
|
|
"user_id": "demo_user",
|
|
"session_id": "demo_session_4",
|
|
"metadata": {
|
|
"category": "databases",
|
|
"subcategory": "graph_database",
|
|
"importance": "medium",
|
|
"tags": ["neo4j", "graph", "relationships", "cypher"]
|
|
}
|
|
}
|
|
]
|
|
|
|
async def store_test_memories():
|
|
"""Store test memories in LangMem API"""
|
|
print("🧪 Populating LangMem with test data...")
|
|
print("=" * 50)
|
|
|
|
headers = {"Authorization": f"Bearer {API_KEY}"}
|
|
|
|
async with httpx.AsyncClient() as client:
|
|
stored_memories = []
|
|
|
|
for i, memory in enumerate(test_memories, 1):
|
|
try:
|
|
print(f"\n{i}. Storing: {memory['content'][:50]}...")
|
|
|
|
response = await client.post(
|
|
f"{API_BASE_URL}/v1/memories/store",
|
|
json=memory,
|
|
headers=headers,
|
|
timeout=30.0
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
data = response.json()
|
|
stored_memories.append(data)
|
|
print(f" ✅ Stored with ID: {data['id']}")
|
|
else:
|
|
print(f" ❌ Failed: {response.status_code}")
|
|
print(f" Response: {response.text}")
|
|
|
|
except Exception as e:
|
|
print(f" ❌ Error: {e}")
|
|
|
|
print(f"\n🎉 Successfully stored {len(stored_memories)} memories!")
|
|
print("\n📊 Summary:")
|
|
print(f" - Total memories: {len(stored_memories)}")
|
|
print(f" - User: demo_user")
|
|
print(f" - Sessions: {len(set(m['session_id'] for m in test_memories))}")
|
|
print(f" - Categories: {len(set(m['metadata']['category'] for m in test_memories))}")
|
|
|
|
# Test search functionality
|
|
print("\n🔍 Testing search functionality...")
|
|
search_tests = [
|
|
"Python web development",
|
|
"AI and machine learning",
|
|
"Database and storage",
|
|
"Docker containers"
|
|
]
|
|
|
|
for query in search_tests:
|
|
try:
|
|
response = await client.post(
|
|
f"{API_BASE_URL}/v1/memories/search",
|
|
json={
|
|
"query": query,
|
|
"user_id": "demo_user",
|
|
"limit": 3,
|
|
"threshold": 0.5
|
|
},
|
|
headers=headers,
|
|
timeout=30.0
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
data = response.json()
|
|
print(f" Query: '{query}' -> {data['total_count']} results")
|
|
for memory in data['memories']:
|
|
print(f" - {memory['content'][:40]}... ({memory['similarity']:.3f})")
|
|
else:
|
|
print(f" Query: '{query}' -> Failed ({response.status_code})")
|
|
|
|
except Exception as e:
|
|
print(f" Query: '{query}' -> Error: {e}")
|
|
|
|
print("\n✅ Test data population complete!")
|
|
print(" You can now view the memories in Supabase web UI:")
|
|
print(" - Table: langmem_documents")
|
|
print(" - URL: http://localhost:8000")
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(store_test_memories()) |