
GeViScope SDK

Dokumen ta t i on | Doc umen ta t i on | Doc umen ta t i on | Doc umen ta t i ón

Version 04.2013

GeViScope Software Development Kit (SDK)
Introduction
TheGeViScope SDK consists of a collection of free software interfaces for the
GEUTEBRÜCK DVRs GeViScope and RePorter. It can be used to integrate these devices
in custom applications and although for linking not yet supported peripherals.

The interfaces are based on nativeWin32 DLLs. So they can be used with various devel-
opment platforms of theWindows OS.

To support the .NET technology the SDK examples contain wrapper classes based on
C++/CLI. These wrapper examples can be freely used, modified and extended by the SDK
users. The C# examples included in the SDK demonstrate, how the wrappers can be used
by custom applications.

Contents
Files and directory structure of the SDK

Setting up a virtual test environment

Remote control GSCView

Overview of the interfaces in the SDK

Supported development platforms

Guidelines and hints

GSCView data filter plugins

Examples overview

Action documentation

Documentation-History Version 3.9 / PME

Files and directory structure of the SDK

During the installation of the SDK the environment variable%GSCSDKPATH% which
points to the root directory of the SDK is set. This reference path is used in all examples.

%GSCSDKPATH%\Bin Contains all dynamic link libraries and is the target directory for the
compiled examples

%GSCSDKPATH%\include Contains all Delphi import units, C++ header and cppfiles

%GSCSDKPATH%\lib Contains all lib files for Borland C++ Builder and Microsoft Visual C++

Thematching interface units between C++ and Delphi have the same name but compiler
specific file extensions.

Setting up a virtual test environment

Introduction
All required components for setting up a virtual GeViScope device are included in the SDK.
So an independent development of custom solutions can be achieved without any special
hardware required.
After starting up theGeViScopeserver (part of the virtual GeViScope device) GeViScope
software can be used with full function for two hours. After that time the functionality is lim-
ited. After stop and restart of the server full functionality is offered for two hours again.

Step by step
After the successful installation of the SDK all necessary files exist in the installation folder
(normally “%HOMEPATH%\My Documents\GeViScopeSDK”).

Step 1: Ass i gn l oca l po l i c y “Lock pages i n memory ”

To runGeViScopeserver on your local machine, a local policy needs to be assigned to the
user account under which GeViScope server should work.
Please open the “Local Security Policy” dialog in the control panel – Administrative Tools.

With “Security Settings / Local Policies / User Rights Assignment” the privilege “Lock
pages inmemory” has to be assigned to the user account under which GeViScope server
should run.
The user has to be amember of the local Administrators group.
The user has to logout and login again to let the setting take effect.

Step 2: unpack the tes t f i l e s

Unpack the file “\BIN\GeViScope.Database.zip” to the root directory of your system drive
(normally “C:”). Afterwards the file “C:\GeViScope.Database” should exist. Please note that
the file is not seen in the windows explorer if hidden files and folders aremasked out.
Unpack the file “\BIN\DatabaseBackup.zip” to the sub folder “\BIN” of the GeViScope SDK
base directory (normally “%HOMEPATH%\My Documents\GeViScopeSDK”). After that
the file “\BIN\DatabaseBackup.gpf“, which contains a test backup file in GBF format
(“GEUTEBRÜCK Backup File”) should exist.

Step 3: s ta r t the GeV i Scopese r ve r

Start the server by double clicking on file “\BIN\GSCServer.exe“. Now a console application
should start.

Step 4: impor t the tes t se tup

Start the GSCSetupsoftware (file “\BIN\GSCSetup.exe“) and establish a connection to the
local server. Use the following login information:
Username = sysadmin
Password = masterkey
Send the setup once to the server by using themenu entry “Send setup to server“.
The test setup “\BIN\GeViScopeSDKSetup.set“ can be imported into the server with the help
of themenu entry “Import setup from file“. Afterwards it should be send to the server once
again.

Step 5: v i ew l i ve v i deo and backup v i deo i n GSCVi ew

Now the correct setup of the test environment should be tested. For that purpose the
GSCViewsoftware (file “\BIN\GSCView.exe”) can be started and again a connection to the
local server should be established. After a successful connectionmedia channels are avail-
able and can be viewed. Simply drag themedia channels on the viewers of GSCView.

Themenu entry “Open backup file…” allows opening the test backup file “\BIN\Data-
baseBackup.gpf“, which also contains media channels that can be displayed. Please check
the correct function of the backup by play back the videomaterial.

Step 6: Use o f too l “ \BIN\ GSCPLCS imul a tor . exe ”

The software “\BIN\ GSCPLCSimulator.exe” serves as amonitoring tool for all messages
(actions) and events that are transported inside the complete system. Furthermore actions
can be triggered and events can be started and stopped.
After building up a connection to the local server all action traffic is displayed in a list.
This tool is extremely helpful for testing of custom applications based on the SDK and for
analyzingmessage flow in the complete system.

Background information
To provide a test environment with full functionality the GeViScopemedia plugin“MCS”
(Media Channel Simulator) is used. It simulates real videomedia channels by channeling
test pictures into the GeViScopeserver. 16media channels can be used as live channels or
can be recorded into the test database. Furthermore the channels createmessages
(actions) that allow using them as base for developing video analysis software.
Themedia plugin“MCS” is part of the SDK including source code (development platform Bor-
land C++ Builder 6) and documentation (please see topic “Examples overview” for more
information).

Overview of the interfaces in the SDK

Introduction
This document gives a short overview of the different interfaces that belong to the SDK.
Please note, that all interfaces include class declarations to access the exported functions
of the dynamic link libraries. To use them in C++, thematching cpp files and the lib files cor-
responding to the DLLs have to be added to the custom project.

Building blocks of functionality
DBI

l Low level server and database interface
l Connection handling, GBF access, raw database access (no video display!), media

export functionality, backup functions, access to raw livemedia (no video display!),
setup data access

l Supports basic functionality for building blocks “PLC” and “MediaPlayer”
l Main binary file: GSCDBI.DLL
l Main include files (C++): GSCDBI.h, GSCDBI.cpp
l Main include files (Pascal): GSCDBI.pas

PLC

l Complex notification, action and event processing
l Listen to, dispatch, create and send actions
l Listen to events and system notifications
l Allows controlling andmonitoring the system
l Main binary file: GSCActions.DLL
l Main include files (C++): GSCActions.h
l Main include files (Pascal): GSCActions.pas

TACI

l Telnet Action Command Interface
l Simple ASCII-Format communication based on Telnet
l Allows controlling andmonitoring the system
l Received actions need to be parsed

l To use that interface, themedia plugin “GSCTelnetActionCommand” needs to be
installed

Medi aP l aye r

l High level server and database interface includingmedia presentation
l Display video, play audio (live and backup)
l Integrated export functionality (GBF, MPEG, Video-DVD, Single picture)
l Searchmedia data by time or corresponding to event data
l Main binary file: GSCMediaPlayer.DLL
l Main include files (C++): GSCMediaPlayer.h, GSCMediaPlayer.cpp
l Main include files (Pascal): GSCMediaPlayer.pas

Of f s c r eenV i ewer

l Part of building block “MediaPlayer”
l Same functionality as MediaPlayer, but: no rendering, only decompressing
l Class TGSCOffscreenViewer can be used analogous to TGSCViewer

Medi a pl ugi n (GeV i Scope se r ve r p l ugi ns)

l GeViScope server plugins allow integrating custom peripherals in GeViScope sys-
tems

l Channeling of video and/or audiomedia into the server
l Including full access to PLC
l Plugins run as In-Process-DLLs in GeViScope server software

GSCVi ew data f i l te r p l ug i n

l GSCView plugins allow integrating custom data filter frontends in GSCView soft-
ware

l Plugins run as In-Process-DLLs in GSCView software

GSCVi ew data pr esenta t i on pl ugi n

l GSCView plugins allow customized presentation of event data in GSCView soft-
ware, especially of event data presented in viewed pictures

l Plugins run as In-Process-DLLs in GSCView software

Remote control GSCView by actions

Introduction
The simplest approach to view and browse live and recorded video of one or more GeViS-
copes is to remote control GSCView out of custom solutions.
GSCView can be used in a special mode so that it can be controlled by actions that are sent
from aGeViScope server. The actions can be channeled into the system using the SDK
(GSCDBI.DLL andGSCActions.DLL) in custom applications. As an alternative the actions
can be sent to the TACI interface of the GeViScope server. The TACI interface is amedia
plugin of the GeViScope server, which can receive actions as ASCII text commands similar
to a TELNET communication. The TACI plugin has to be licensed.

Step by step
The following step by step instructions show how to configure a simple system to demon-
strate remote controlling GSCView. The virtual test environment included in the SDK should
be successfully installed and set up before following these instructions (see topic Setting up
a virtual test environment).

Step 1: s ta r t the GeV i Scope se r ve r

Start the server by double clicking on file “\BIN\GSCServer.exe“. Now a console application
should start.

Step 2: s ta r t GSCVi ew

Start the GSCView software (file “\BIN\GSCView.exe”).

Step 3: s ta r t the pr o f i l e manager

Themenu entry “Options – Profile manager…” starts the internal profile manager of
GSCView. The profil manager allows configuring all GSCView settings.

Step 4: dec l a r e l oca l connec t i on as “connec t automat i ca l l y ”

By selecting “Connections” in the section “Resources” the local connection can be declared
as a connection that is automatically built up after starting GSCView. Additional the option
“Reconnect automatically” should be activated.

If the connection is open in GSCView or GSCSetup, the settings of the connection cannot
be changed. Close all local connections at first to be able to change the connection settings.

Step 5: conf i gur e GSCVi ew to be abl e to r emote contr o l i t by
ac t i ons

The entry “Options profile” in the section “Profiles” shows a tab control with a lot of different
GSCView settings. To be able to remote control GSCView the option “Remote control” on
the “Actions” tab has to be set.

The “Viewer client number” should be set to a arbitrary global number that is unique in the
whole system. This global “Viewer client number” identifies this special instance of
GSCView in the whole network. The number is used in different actions to remote control
GSCView.
By contrast the “global number” of a viewer in a custom scene identifies a special viewer in
a user defined scene. Details about user defined scenes will be topic of the next step.

Step 6: use r de f i ned scenes

To define user defined scenes in GSCView the entry “Scenes” in section “Resources”
should be selected. By right clicking on one of the predefined scenes new user defined
scenes can be created. For this step by step example two new scenes with the names
“MyStartScene” and “MyScene” have to be added. With the button “Edit scene” the global
numbers of the viewers of the scene and the video channels that should be displayed can be
set.
The “MyStartScene” should be based on the “Matrix 4x4”. The viewers should have the
global numbers 1001 to 1016. Each viewer should display live pictures of a video channel of
the local connection. The video channels can be set via drag & drop while editing the scene.

The “MyScene” should be based on the “Matrix 2x2” and the viewers should have the global
numbers 1101 to 1104. The viewers should not automatically display any video channel.
They will be used by special actions to display video channels.

Step 7: modi f y the appear ance o f GSCVi ew

The appearance of GSCView can be controlled by different settings in the entry “Options pro-
file” of the section “Profiles”. For this test scenario, GSCView should appear as a stupid
video wall without any user controls directly visible in the GSCView application window. To
achieve this, the following options on the “Application” tab have to be set:

Please keep inmind, that if the option “Sensitive area enabled” is not set and if all “Hide…”
options are set, themainmenu of GSCView only can be accessed by pressing F10!

Step 8: save a l l s e t t i ngs

All settings should be saved by selecting themenu entry “File – Save”.

Step 9: tes t the sys tem wi th GSCPLCS imul a tor

After restarting GSCView it should appear in full mode with 16 viewers displaying live pic-
tures of the video channels of the local connection.

Now start the software “\BIN\ GSCPLCSimulator.exe” to test the system. The
GSCPLCSimulator serves as amonitoring tool for all messages (actions) and events that
are transported inside the complete system. Furthermore actions can be triggered and
events can be started and stopped.
After its start the connection to the local server should be build up automatically and all
action traffic is displayed in a list.

With the button “Dialog” an action can be selected and with the button “Send” this action can
be send to the GeViScope server. For testing the system first select the action “VC change
scene by name” in the category “Viewer actions” to display “MyScene” on the GSCView
with the global “Viewer client number” 1000.

After sending the action, GSCView should display an “empty” “MyScene”.

To display video channels in the viewers of “MyScene” the action “Viewer connect live” can
be used. The parameter “viewer” now means the global number of a viewer of “MyScene”,
e.g. 1102. The parameter “channel” should be set to the global number of the video channel
that should be displayed, e.g. 2.

After sending the action, GSCView displays live video of the video channel 2 on the upper
left viewer in GSCView.

Background information
In GeViScope systems actions are used to communicate between theGeViScope server
and any client application. All available actions can be divided into three groups:

Notification actions (for example “User Login”), command actions (for example “Viewer con-
nect live”) and logical actions (these actions are not directly created by the GeViScope
server and they don’t directly result in any reaction in the GeViScope server, for example
“Custom action”).

All actions are grouped in different categories. The category “Viewer actions” contains all
actions that are relevant for remote controlling GSCView.

To get notifications about GSCView activities, one of the options “Send notification actions”
in the profile manager of GSCView has to be set. All possible notification actions are col-
lected in the action category “Viewer notifications”.

More detailed information about all available actions can be found in the topic “Action doc-
umentation” (especially Viewer actions and Viewer notifications).

Please be aware of the fact that GSCView is working in an asynchronous mode. If a custom
application sends an action, that depends on the result of the previous sent action theremay
be the need for inserting a pause time before sending the second action (e.g. send action
“Viewer connect live”, wait one second, send action “Viewer print picture”). GSCView does
not have an input queue for remote control actions.

Supported development platforms
The SDK is designed and tested to be used with the following development environments:

l CodeGear C++ Builder 6 ©
l CodeGear C++ Builder 2009 ©
l CodeGear Delphi 7 ©
l CodeGear Delphi 2005 ©
l CodeGear Delphi 2009 ©
l Microsoft Visual Studio 2005, C++, MFC ©
l Microsoft Visual Studio 2008, C++, MFC ©
l Microsoft Visual Studio 2005, C++/CLI ©
l Microsoft .NET © (wrapper classes are contained in the “Examples” folder)

Guidelines and hints

Introduction
It is recommended to be familiar with the GeViScope system and the possibilities of modern
video surveillance systems and videomanagement systems. Before starting programming
your custom GeViScope client you should know basics of video formats, video com-
pression, GeViScope events, GeViScope actions and the principles of a client - server net-
work communication.

The following sections support you with some suggestions and hints about using the SDK
interfaces.

General hints
If your application needs to listen to events and actions please use the application PLCSim-
ulator.exe that you can find on Your GeViScope device. This software allows you to start
actions and events whichmight be used by your program.

You should work and do some tests with a real GeViScope device or with the virtual test
environment belonging to the SDK. Create some events and actions, start them with
PLCSimulator.exe.

Starting the setup software GSCSetup.exe with the command line parameter /utilities will
offer you the possibility to open DBITest to discover the database structure and to evaluate
and test select statements against the database. Additionally this tool offers you the pos-
sibility to start the registry editor to evaluate the internal structure of the GeViScope setup.

Make sure to delete all objects that are created ins ide of DLLs. The objects
themselves should always offer a Destroy() or Free() method for that.

Callback functions, which are called out of the SDK DLLs, are called from threads, which
were created inside the DLLs. Variables and pointers that are passed as arguments of the
callback may not be used outside the callback context. They are only valid for the duration
of the callback call.

Structures that are used as arguments for SDK functions should always be initialized by the
functionmemset(). After setting all the structure elements to zero, the size or structsize ele-
ment has to be initialized with the sizeof() function.

MPEG-2 files that were created by SDK functions can possibly not be played with the win-
dows media player. The reason is amissingMPEG-2 decoder. We recommend using DVD
player software like PowerDVD or the VCLMedia Player software.

Working with handles and instances
Integral part of the SDK are units that give the user a comfortable access to the plain func-
tions of the DLL, e.g. GSCDBI.h/.cpp/.pas. In these units classes encapsulate access to
instances of objects which are created inside the DLL. To have access from outside the
DLL (custom application) to the inside residing instances, handles are used. The units have
to be added to the project respectively to the solution to avoid linker errors.

After work with instances is finished, the instances have to be deleted by calling their des-
troy() or free() method. Otherwise there will bememory leaks left.

Using the plain exported functions of the DLL is not recommended. To get access to full
functionality you should use the units instead (pas files or h/cpp files).

The following example (in pseudo code) should illustrate the above facts:

 // define a handle to a server object
 HGscServer MyServer;

// create a server object instance inside the DLL and
 // get a handle to it
 MyServer = DBICreateRemoteserver();

 ...

// work with the object instance with the help of the handle
 MyServer->Connect();

 ...

 // define a handle to a PLC object
 HGscPLC PLC;

 // create a PLC object instance inside the DLL and
 // get a handle to it
 PLC = MyServer.CreatePLC();

 ...

// work with the object instance with the help of the handle
 PLC->OpenPushCallback(...);

 ...

// destroy PLC object
 PLC->Destroy();

 ...

 // destroy server object
 MyServer->Destroy();

Interaction between DBI and MediaPlayer
The DBI interface gives access to GeViScope server functionality. After creating an
instance with the function DBICreateRemoteserver() a connection to the server can be
established by calling themethod Connect() of the server object instance.

The followingmethods of a server object instance can be called to get access to different
kinds of functions (not a complete list):

Method Function
CreateDataSet(),
CreateDataPacket()

Fetch data from server database

CreateLiveStream() Fetch live data from server
CreateRegistry() Fetch setup data from server (media channel information, event

information, …)
CreatePLC() Listen to, create and send actions

The example (in pseudo code) of the previous chapter should illustrate the above facts.

TheMediaPlayer interface offers simple to use objects to display live and recorded video in
windows controls. A viewer object instance needs to be created by calling
GMPCreateViewer(). The viewer needs a handle to a windows control and a handle to a
server object instance. It handles fetching data, decompressing data and displaying video in
the linked windows control by itself.

The followingmethods of a viewer object instance can be called to get access to different
kinds of functions (not a complete list):

Method Function
ConnectDB() Fetch video data from the database and display it in any play mode required.

Filter and search criteria can optionally be defined.
SetPlayMode
(pmPlayNextEvent)

Display the next available event pictures

The following example (in pseudo code) shows how to create a viewer and use it after-
wards:

// define a handle to a viewer object
 HGscViewer MyViewer;

// create a viewer object instance inside the DLL and
// get a handle to it
 MyViewer = GMPCreateViewer(WindowHandle, ...);

// define a structure with data needed to link
// the viewer to amedia channel in the server
 TMPConnectDataMyViewerConnectData;
 // handle to the server object instance
 MyViewerConnectData.Connection = MyServer;
 MyViewerConnectData.ServerType = ctGSCServer;
 MyViewerConnectData.MediaType = mtServer;
 // ID of themedia channel that should be displayed
 MyViewerConnectData.MediaChID = ...

// link the viewer to amedia channel and display live data
 MyViewer->ConnectDB(MyViewerConnectData, pmPlayStream, ...);

 // destroy viewer object
 MyViewer->Destroy();

Beside the viewer object class there is another class in theMediaPlayer interface: The off-
screen viewer object class. If you want to decompress media, which should not be

displayed with the help of the viewer object, you can use the offscreen viewer object. An
instance can be created with the function GMPCreateOffscreenViewer(). The offscreen
viewer object instance provides nearly the same functionality as the viewer object class
does. The video footage is not rendered in a window, it is decompressed in a special Decom-
pBuffer object instance. After the decompression is done inside the offscreen viewer, the
hosting application can be notified with the help of a callback function. Inside the callback
the decompressed image can be accessed.

The DecompBuffer class encapsulates special functions for effective decompressing. So it
is recommend to use it. Creating an instance of the buffer can be reached by calling the func-
tion GMPCreateDecompBuffer(). The instance can be used for as many decompressions
as needed. ThemethodGetBufPointer() gives access to the raw picture data inside the buf-
fer.

Here is a short example (in pseudo code) how to work with an offscreen viewer object:

 // define a handle to a DecompBuffer object
 HGscDecompBuffer MyDecompBuffer;

 // create a DecompBuffer object instance inside the DLL and
 // get a handle to it
 MyDecompBuffer = GMPCreateDecompBuffer();

 // define a handle to a offscreen viewer object
 HGscViewer MyOffscreenViewer;

 // create an offscreen viewer object instance inside the DLL and
 // get a handle to it
 MyOffscreenViewer = GMPCreateOffscreenViewer(MyDecompBuffer);

 // set callback of the offscreen viewer object
 MyOffscreenViewer.SetNewOffscreenImageCallBack(NewOff-
screenImageCallback);

 // define a structure with data needed to link
 // the offscreen viewer to amedia channel in the server
 TMPConnectDataMyOffscreenViewerConnectData;
// handle to the server object instance
 MyOffscreenViewerConnectData.Connection = MyServer;
 MyOffscreenViewerConnectData.ServerType = ctGSCServer;
 MyOffscreenViewerConnectData.MediaType = mtServer;
 // ID of themedia channel that should be decompressed
 MyOffscreenViewerConnectData.MediaChID = ...

// link the offscreen viewer to amedia channel and decompress live data
 MyOffscreenViewer->ConnectDB(MyOffscreenViewerConnectData, pmPlayStream,
...);

 ...

 // destroy offscreen viewer object
 MyOffscreenViewer->Destroy();

 // destroy DecompBuffer object

 MyDecompBuffer->Destroy();

 ...

 // callback function, that is called after images have been decompressed

 ...

 // get a raw pointer to the picture in the DecompBuffer
 // object
 MyDecompBuffer->GetBufPointer(BufferPointer, ...);

 // copy the picture into a windows bitmap resource
 // for example
 SetDIBits(..., BitmapHandle, ..., BufferPointer, ..., DIB_RGB_COLORS);

 ...

Enumeration of setup data
GeViScope Server resources can be enumerated by custom applications. The setup object,
which can be instantiated by calling the server method CreateRegistry(), offers functionality
for this.

Enumeration of resources normally is done in four steps:

1. Define an array of typeGSCSetupReadRequest with the only element “/”. This
causes themethod ReadNodes() to transfer the whole setup from the server to the
custom application.

2. Call themethod ReadNodes() of the setup object to get the whole setup from the
server.

3. Call one of the Get…() methods of the setup object to get an array of GUIDs rep-
resenting the list of resources. There are different Get…() methods, e. g. GetMe-
diaChannels() or GetEvents().

4. Use the GUID array to receive the resources data by calling Get…Settings() meth-
ods, e. g. GetMediaChannelSettings() or GetEventSettings().

Here is an example (in pseudo code), that shows how to enumerate themedia channels:
 ...

// connect to the server
 MyServer->Connect();

 ...

// define a handle to a setup object
 HGscRegistry MySetup;

 // create a setup object instance inside the DLL and
 // get a handle to it
 MySetup = MyServer->CreateRegistry();

// define a array for the setup read request
 GscSetupReadRequest SetupReadRequest[1];
 SetupReadRequest[0].NodeName = "/";

// read the setup data from the server
 MySetup->ReadNodes(&SetupReadRequest, ...);

 // define aGUID array for the GUIDs of the
 // existingmedia channels
 GuidDynArray MediaChannels;

// get the GUID array out of the setup data
 MySetup->GetMediaChannels(MediaChannels);

// get the data of each single media channel
for eachMediaChannelGUID inMediaChannels

 MySetup->GetMediaChannelSettings(MediaChannelGUID,
 MediaChannelID,
 GlobalNumber,
 ...);

 ...

// destroy setup object
 MySetup->Destroy();

// destroy server object
 MyServer->Destroy();

 ...

Please note that especially themedia channels can be enumerated by using the global func-
tion GMPQueryMediaChannelList() of theMediaPlayer interface as well.

PLC, actions and events
The PLC (Prcess Logic Control) object supports you with functionality for handling noti-
fications, actions and events. Themethod CreatePLC() of the server object class creates a
handle to a PLC object inside the DBI DLL.

The followingmethods of a PLC object instance can be called to get access to different
kinds of functions (not a complete list):

Method Function
SendAction() Send an action to the connected server
StartEvent() Start an event of the connected server
SubscribeActions() Subscribe a list of actions that should be notified by a registered callback

function

OpenPushCallback
()

Register a callback function, that is called if an notification arrives or a
event starts/stops or if one of the subscribed actions arrives

To receive Notifications and actions a callback function can be registered with themethod
OpenPushCallback(). After receiving an action, the action should be decoded and dis-
patched by the an instance of the class GSCActionDispatcher. The action dispatcher gives
you a simple way to react on specific actions. Here is a short example (in pseudo code):

 // initialization code:

 ...

 // connect to the server
 MyServer->Connect();

 ...

// define a handle to a PLC object
 HGSCPLC PLC;

 // create a PLC object instance inside the DLL and
 // get a handle to it
 PLC = MyServer.CreatePLC();

 ...

 // link your callback function for a custom action
 // to the action dispatcher, so that the callback function
 // is called automatically if a cutsom action arrives
 ActionDispatcher->OnCustomAction = this->MyCustomActionHandler;

 // register a callback function for notifications,
 // events and actions (this callback function dispatches
 // all received actions with the help of the
 // GSCActionDispatcher)
 PLC->OpenPushCallback(...);

 ...

// destroy PLC object
 PLC->Destroy();

 ...

// destroy server object
 MyServer->Destroy();

 // callback function for all notifications, events and
 // subscribed actions:

 ...

 // dispatch the received action to the linked
 // callback functions
 ActionDispatcher->Dispatch(ActionHandle);

 ...

Media channel IDs
The existingmedia channels can be displayed by the viewer objects of theMediaPlayer
interface. Normally this is done with themethod ConnectDB(). This method needs the

media channel ID to identify themedia channel (camera) that should be displayed.

Themedia channel IDs are generated automatically by the GeViScope server. Every cre-
atedmedia channel gets an ID that is always unique. So if you removemedia channels from
the setup and add them again, they will sure receive some new IDs.

For that reasonmedia channels should not be accessed by constant IDs. It is recommend
using global numbers instead, because they can be changed in the setup. To find the fitting
media channel ID for a given global number, themedia channels should be enumerated from
the server setup. Please refer to chapter “Enumeration of setup data” in this document to
see how this is done.

There is a similar difficulty with events, digital inputs and outputs. Events don’t have global
numbers. Here the event name should be used instead.

Handling connection collapses
The callback OpenPushCallback() of the PLC object enables to listen to different kinds of
notifications from the PLC object. One is the “plcnPushCallbackLost” notification. It is fired
if a connection is internally detected as collapsed. As a reaction on this event you should
destroy or free all objects that were created inside the DLLs and start a phase of reconnect
tries. The reconnect tries should start every 30 seconds for example. Additionally your
application can listen to UDP broadcasts that are sent by the GeViScope server. After your
application received this broadcast it can directly try to reconnect to the server. Please be
aware of the fact, that broadcasts only work in LAN – routers normally block broadcasts.

Using MediaPlayer with GeViScope and MULTISCOPE III
servers
Generally theMediaPlayer interface can be used with GeViScope as well as MULTISCOPE
III servers. To link the server connection to the viewer object, the connection data structure
has to be defined. The type of the structure is “TMPConnectData”. The element “Server-
Type” identifies the kind of server whosemedia should be displayed in the viewer.

Please have a look on the example (in pseudo code) in the chapter “Interaction between DBI
andMediaPlayer” in this document.

For creating different kind of connections, different DLLs have to be used. For GeViScope
the DLL “GSCDBI.DLL” and for MULTISCOPE III the DLL “MscDBI.DLL” has to be
included in the project or solution of the custom application. They can coexist.

Handling a connection to aMULTISCOPE III server is similar to GeViScope. Details can be
found in theMULTISCOPE III SDK documentation.

Using the SDK with .NET
Tomake the usage of the nativeWin32 DLLs easier in .NET languages like C# or VB.NET,
the SDK contains somewrapper assemblies around the plain SDK DLLs.

These wrapper assemblies are developed in C++/CLI and published with the SDK. The
assemblies can be found in the GeViScope SDK binary folder “GeViScopeSDK\BIN”.

The SDK provides wrapper assemblies for the .NET-Frameworks versions 2.0 and 4.0
which are named as follows:

.NET-Framework 2.0
• GscExceptionsNET_2_0.dll
• GscActionsNET_2_0.dll
• GscMediaPlayerNET_2_0.dll
• GscDBINET_2_0.dll

.NET-Framework 4.0
• GscExceptionsNET_4_0.dll
• GscActionsNET_4_0.dll
• GscMediaPlayerNET_4_0.dll
• GscDBINET_4_0.dll

These wrapper assemblies can be used together with our native SDK DLLs (GscAc-
tions.DLL, GscDBI.DLL, GscHelper.DLL, GscMediaPlayer.DLL, MscDBI.DLL) to create
custom applications under any .NET language on a windows platform. The assemblies
need to be referenced by the .NET project and all the files (assemblies and native DLLs)
have to reside in the application folder.

Deploying a custom solution based on the .NET wrapper
To successfully deploy a custom application that uses the .NET wrapper contained in the
SDK, the following prerequisites have to be fulfilled:

a) Mi c r oso f t V i sua l C++ Redi s t r i butabl e Package has to be
i ns ta l l ed

The wrapper assemblies are developed in C++/CLI. So for executing them on a none devel-
opment machine, theMicrosoft Visual C++ Redistributable Package is needed. This pack-
age exists in a debug or in a release version. On productivemachines the release version
needs to be installed.

For applications using the .NET-Framework 2.0 the Visual C++ 2008 Redistributable Pack-
age is needed. In case that the application is developed using the .NET-Framework 4.0 you
need to install the Visual C++ 2010 Redistributable Package.

b) .NET F r amewor k Ver s i on 2.0 SP 1 or newer has to be
i ns ta l l ed

If updating the .NET Framework on aGEUTEBRÜCK device (GeViScope or re_porter)
fails, a special Microsoft tool Windows Installer CleanUpUtility (MSICUU2.exe) can
improve the situation. After executing this tool, updating the Framework should be possible.

c) Wrappe r assembl i e s AND nat i ve SDK DLLs ar e needed

Beside the custom application also the wrapper assemblies and the native SDK DLLs (lis-
ted above) are needed in the same folder as in which the custom application resides.

If the application uses the .NET-Framework 4.0 you need to reference the GeViScope wrap-
per DLLs with the extension _4_0 otherwise please use the wrapper assemblies with the
extension _2_0 (see above).

GeViScope REGISTRY
Using the GscRegistry with .NET
Introduction
By using the GeViScope registry (GSCREGISTRY) it is possible to modify GeViScope/Re_
porter settings programmatically. TheGscRegistry is a proprietary registry format
developed by GEUTEBRÜCK. This registry format is similar to theMicrosoft Windows
registry.

All neededGeViScope server settings are stored in the GscRegistry database. The creation
of own registry databases based on files is also possible.

TheGEUTEBRÜCK GEVISCOPE SDK provides several classes andmethods to allow a
comfortable access to the GscRegistry.

Requirements
The following requirements are needed to create a .NET application that uses the GscRe-
gistry functionality:

• .NET-Framework 2.0 SP1 or newer
- .NET-Framework 2.0 SP1Wrapper-Assemblies:

GscExceptionsNET_2_0.dll
GscDBINET_2_0.dll

- .NET-Framework 4.0Wrapper-Assemblies:
GscExceptionsNET_4_0.dll
GscDBINET_4_0.dll

• NativeWin32-DLLs, used by the .NET-Wrapper:
- GscActions.dll
- GscDBI.dll
- GscMediaPlayer.dll
- GscHelper.dll
- MscDBI.dll

• Microsoft Visual C++ Redistributable Package

Using the registry
In the following, the usage of the GscRegistry with .NET is explained in detail. It discusses
the following steps:

l Open the registry
l Read values out of nodes
l Create a node
l Add values to a node
l Save the registry

All necessary classes andmethods for using the GscRegistry are available in the GscDBI
namespace. To include this namespace the following using-statement is needed:

using GEUTEBRUECK.GeViScope.Wrapper.DBI;

Open the r egi s t r y
To read or modify GeViScope/Re_porter settings it is necessary to establish a connection
to the preferred GeViScope/Re_porter server before. After this is done you need to create a
new object of the class GscRegistry and initialize it by using the CreateRegistry() method
which is contained in the GscServer object.

C#-Code: Open the registry

if (_GscServer != null)
{

// create an object instance of the server registry
GscRegistry GscRegistry = _GscServer.CreateRegistry();
if (GscRegistry != null)
{

// define an array for the setup read request (registry node paths
to read)

GscRegistryReadRequest[] ReadRequests = new GscRegistryReadRequest
[1];
ReadRequests[0] = new GscRegistryReadRequest("/", 0);
// read the nodes (setup data) out of the server registry
GscRegistry.ReadNodes(ReadRequests);

}
}

ThemethodReadNodes() of the GscRegistry object expects an array of the typeGscRe-
gistryReadRequest which contains all node paths to be read out of the registry. In the
source code snippet above, the array simply contains one element which represents the
root node (“/”). By reading the root node the entire registry will be read out.

Read va l ues o f nodes
The following source code snippet shows how to read values out of nodes:

C#-Code: Read values out of nodes

if (GscRegistry != null)
{

GscRegNode RegNode = GscRegistry.FindNode("/System/MediaChannels/");

for (int i = 0; i < RegNode.SubNodeCount; ++i)
{

// find the GeViScope registry node of the parent node by means of
the index
GscRegNode SubRegNode = RegNode.SubNodeByIndex(i);
GscRegVariant RegVariant = new GscRegVariant();

// Get the value "Name" out of the sub registry type and store the
value and
// value type in the GscRegVariant class
SubRegNode.GetValueInfoByName("Name", ref RegVariant);

if (RegVariant != null && RegVariant.ValueType ==
GscNodeType.ntWideString)
Console.WriteLine(RegVariant.Value.WideStringValue);

}
}

To read a specific node out of the registry theGscRegistry class provides themethod
FindNode().

For that the path to the preferred node has to be committed to themethod and it you will get
back an object of the type of GscRegNode. This object contains all sub nodes and values of
the found node.

To access a sub node of the parent node themethodSubNodeByIndex() provided by the
class GscRegNode can be used or use theSubNodeByName()method if the name of the
sub node is already known.

ThemethodGetValueInfoByName() can be used to access a specific value of a node. This
method expects the name of the specific value as well as a reference to an object of type of
GscRegVariant. TheGscRegVariant object will be filled with the type of the value
(ValueType) as well as the value itself (Value).

Cr ea te a node

To create a new node in a parent node themethodCreateSubNode()which is provided by
the class GscRegNode needs to be called. Themethod expects the name of the new node.

C#-Code: Create a node

if (_GscRegistry != null)
{

GscRegNode RegNode = _GscRegistry.FindNode("/System/MediaChannels/0000");

// create a new sub node in NodePath
if (RegNode != null)
RegNode.CreateSubNode("NewNode");

}

Add va l ues to a node
There are several methods in the class GscRegNode to add values to a node. Depending on
the type of the value it is needed to call the right method for writing this type into the registry.
For example if you would like to write an Int32 value into the registry you need to use the
methodWriteInt32().

C#-Code: Add values to node

public void AddValue(string NodePath, string ValueName, GscNodeType ValueType,
object Value)
{

GscRegNode RegNode = _GscRegistry.FindNode(NodePath);

if (RegNode != null)
{

switch (ValueType)
{

caseGscNodeType.ntWideString:
{

RegNode.WriteWideString(ValueName, Value.ToString());
break;

}
caseGscNodeType.ntInt32:
{

RegNode.WriteInt32(ValueName, Convert.ToInt32(Value));
break;

}
}

}
}

Save the r egi s t r y
After theGscRegistry object was modified (e.g. new nodes/new values), the server also
needs to know about the changes made. For this the GscRegistry class provides the
methodWriteNodes().

C#-Code: Add values to node

// define an array for the setup write request

GscRegistryWriteRequest[] WriteRequests = new GscRegistryWriteRequest[1];
WriteRequests[0] = new GscRegistryWriteRequest("/", 0);
GscRegistry.WriteNodes(WriteRequests, true);

TheWriteNodes()method expects an array containing objects of the type of GscRe-
gistryWriteRequest. EachGscRegistryWriteRequest contains a path to a node that has to
be saved.

 NOTICE

It is recommended to only add one element to this array which contains the root path (“/”).
This results in saving the entire registry structure.

Structure of GSCRegistry
TheGEVISCOPE SDK offers two possibilities to browse the structure of theGscRegistry.
By means of the applicationGscRegEdit that is delivered with the SDK, it is possible to
browse or modify the registry similar to Microsoft’s Windows registry.

In addition toGscRegEdit you can also use the registry editor which is integrated in
GSCSetup. To activate this feature the key combinationSTRG+ALT+U needs to be actu-
ated. The entry Registry editor in the sectionUtilities in the navigation bar on the left will
now be shown.

Examples
To get a better idea of how to use the GscRegistry, the GEVISCOPE SDK provides further
.NET example applications.

The examples can be found in the folder „Examples“ folder in the GeViScopeSDK main
folder:

l C:\Program Files (x86)\GeViScopeSDK\Examples\VS2008NET\VS2008NET_
GscRegEdit
Simple registry editor, GUI application (Visual Studio 2008)

l C:\Program Files (x86)\GeViScopeSDK\Examples\VS2008NET\VS2010NET_
GscRegEdit
Simple registry editor, GUI application (Visual Studio 2010)

l C:\Program Files (x86)\GeViScopeSDK\Examples\VS2008NET\VS2008NET_
GscRegistryBasics
Console application (Visual Studio 2008)

l C:\Program Files (x86)\GeViScopeSDK\Examples\VS2010NET\VS2010NET_
GscRegistryBasics
Console application (Visual Studio 2010)

GSCView data filter plugins

Introduction
GSCView offers the possibility to integrate customized data filter dialogs. Data filter dialogs
are used to search and filter video footage by additional event data. They can be customized
to the different business environments in which GeViScope is used.

The following sections support you with some suggestions and hints about creating cus-
tomized data filter plugins.

General hints
Custom data filters are hosted in flat windows 32Bit dynamic link libraries. Differing from nor-
mal DLLs the data filter DLLs have the extension “.GPI”. All data filter DLLs existing in the
same folder as GSCView are integrated in GSCView automatically.

The customized data filter DLL interface
Each DLL has to export the function GSCPluginRegisterSearchFilter() that is called by
GSCView to use the customized dialogs. The exact definition of this function and some
additional type definitions can be found in the unit “GSCGPIFilter.pas/.h”.

Inside the function GSCPluginRegisterSearchFilter() one or evenmore data filter dialogs
have to be registered by calling the function Callbacks.RegisterFilter().

The following example (in pseudo code) shows how this is done:

if(Callbacks.RegisterFilter == NULL)

return FALSE;

TPluginFilterDefinition def;

def = SimpleFilter.GetFilterDefinition();
Callbacks.RegisterFilter(Callbacks.HostHandle, def);

The structure TPluginFilterDefinition defines some informational data and all the callback
functions needed for a single dialog. GSCView uses the definition to call the different call-
back functions during its execution.

Name of callback
function Function

InitFilter() Can be used to initialize the data filter dialog. To integrate the dialog in
GSCView, the function has to return true.

ShowFilter() Inside this function the dialog should be displayed as a stand-alone
(modal) dialog. GSCView calls the function after the user activates the

 button.
DeinitFilter() Can be used to deinitialize the data filter dialog. The function has to return

true, even if it is not used.
GetFilterGuid() The function should provide a global unique identifier (GUID) that is used

inside GSCView to identify the dialog. The GUID can be defined as a static
constant value.

As an alternative to themodal display of the data filter dialog, the dialog can be displayed
nested in the GSCView main window or GSCView event list. But at themoment this feature
is only supported by custom filter dialogs created with Borland Delphi ©.

To achieve the nested display, the additional callback functions of the structure TPlu-
ginFilterDefinition have to be implemented. The Borland Delphi © example
“GSCViewDataFilter” demonstrates the details.

Creating the filter criteria
If the custom data filter is applied, GSCView does a query against the tables “events” and
“eventdata” of the internal GeViScope database. For this query a filter criteria is needed. The

custom data filter delivers the criteria and gives it back to GSCView in the ShowFilter() call-
back function.

To build upmeaningful filter criteria some background knowledge of the GeViScope data-
base is needed.
The table “events” contains all the events recorded in the database (only event information,
not the samples; the samples are linked to the events).

The table “eventdata” contains additional data belonging to the events. Inside the table the
different parameters of actions are saved. If for example an event is started by the Cus-
tomAction(4711, “Hello world”), the value 4711 is saved in the row “Int64_A” and the value
“Hello world” is saved in the row “String_A”. Because the event is started by a Cus-
tomAction, the value 8 is saved in the row “EventDataKind”. Each action has an individual
mapping of action parameters to rows in the table “eventdata”.

For different business environments special actions can be created by GEUTEBRÜCK.
There already exist some special actions like:

Action name Business environment
ATMTransaction() Automated teller machines
ACSAccessGranted() Access control systems
SafebagOpen() Cash management systems
POSData() Point of sale systems

The action internally defines themapping of action parameters to rows in the table “event-
data”. The code of an action (for a CustomAction the code is 8) is stored in the row
“EventDataKind”. The codes of actions are listed in the action reference documentation
“GSCActionsReference_EN.pdf”.

To evaluate themapping of action parameters to database rows, GSCSetup can be used.
By pressing STRG+ALT+U in GSCSetup the special utility “DBI test” gets available.

With “DBI test” the structure and content of the GeViScope database can be analyzed. The
following SQL queries can be helpful:

SQL query Function
select * from events Fetches records from the table “events”
select * from eventdata Fetches records from the table “eventdata”
select * from samples Fetches records from the table “samples”

The following table should demonstrate how to build up filter criteria depending on para-
meters given in the custom data filter dialog (here the CustomAction() is used to start the
events):

Action
para-
meter
INT

Action
para-
meter
STRING

Fil-
terCriteria.SQLstatement SQL query

Nothing Nothing EventData.EventDataKind = 8 select * from EventData left join Events on
EventData.EventID = Events.EventID with
EventData.EventDataKind = 8

Nothing Hello
world

EventData.EventString_A =
"Hello world" and
EventData.EventDataKind = 8

select * from EventData left join Events on
EventData.EventID = Events.EventID with
EventData.EventString_A = "Hello world"
and EventData.EventDataKind = 8

4711 Nothing EventData.EventInt64_A =
4711 and
EventData.EventDataKind = 8

select * from EventData left join Events on
EventData.EventID = Events.EventID with
EventData.EventInt64_A = 4711 and
EventData.EventDataKind = 8

4711 Hello
world

EventData.EventInt64_A =
4711 and
EventData.EventString_A =
"Hello world" and
EventData.EventDataKind = 8

select * from EventData left join Events on
EventData.EventID = Events.EventID with
EventData.EventInt64_A = 4711 and
EventData.EventString_A = "Hello world"
and EventData.EventDataKind = 8

Nothing Hello* EventData.EventString_A =
"Hello*" and
EventData.EventDataKind = 8

select * from EventData left join Events on
EventData.EventID = Events.EventID with
EventData.EventDataKind = 8 where
EventData.EventString_A LIKE "Hello*"

During testing the custom data filter dialog in the GSCView event list a double click on the
status bar of the event list delivers the SQL query that is executed in the GeViScope server.

Examples overview
The examples overview is organized in two different views on all examples including the
GeViScopeSDK:

Examples grouped by programming tasks

Examples grouped by development platforms

Examples grouped by programming tasks

Connec t to and di s connec t f r om a GeV i Scope se r ve r

l LiveStream (CodeGear C++ Builder 6 and 2009)
l SimpleClient (CodeGear Delphi 7, 2005 and 2009)
l GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
l VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
l VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
l VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
l VS2008WPF_SimpleClient (Microsoft Visual Studio 2008, C#, WPF)
l VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)
l VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)
l VS2010WPF_SimpleClient (Microsoft Visual Studio 2010, C#, WPF)

Enumera te ex i s t i ng medi a channe l s and event types f r om a
GeV i Scope se r ve r

l LiveStream (CodeGear C++ Builder 6 and 2009)
l SimpleClient (CodeGear Delphi 7, 2005 and 2009)
l GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
l VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
l VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_GscRegEdit (Microsoft Visual Studio 2008, C#)
l VS2008NET_GscRegistryBasics (Microsoft Visual Studio 2008, C#)
l VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
l VS2010CPP_ConfigReader (Microsoft Visual Studio 2010, C++)
l VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)
l VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)
l VS2010NET_GscRegEdit (Microsoft Visual Studio 2010, C#)
l VS2010NET_GscRegistryBasics (Microsoft Visual Studio 2010, C#)
l VS2010WPF_SimpleClient (Microsoft Visual Studio 2010, C#, WPF)

Di sp l ay l i ve and r ecor ded medi a w i th the Medi aP l aye r i nte r -
f ace

l LiveStream (CodeGear C++ Builder 6 and 2009)
l SimpleClient (CodeGear Delphi 7, 2005 and 2009)
l GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
l VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
l VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
l VS2008WPF_SimpleClient (Microsoft Visual Studio 2008, C#, WPF)
l VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)
l VS2010WPF_SimpleClient (Microsoft Visual Studio 2010, C#, WPF)

Di sp l ay r ecor ded event medi a w i th the Medi aP l aye r i nte r f ace

l VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
l VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)

Handl i ng ac t i ons and PLC not i f i c a t i ons

l GSCActions (CodeGear C++ Builder 6 and 2009)
l SimpleClient (CodeGear Delphi 7, 2005 and 2009)
l ResourceStateMonitor (Delphi 2009)
l VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
l VS2010CPP_ControlBlockingFilters (Microsoft Visual Studio 2010, C++)
l VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)

Handl i ng events

l LiveStream (CodeGear C++ Builder 6 and 2009)
l GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
l VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
l VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)

Cr ea t i ng backups

l Backup (CodeGear Delphi 7 and 2009)

Synchr oni zed di sp l ay o f mor e than one medi a channe l s

l SynchPlayback (CodeGear C++ Builder 6 and 2009)

Cus tom dr aw i n v i ewer s o f Medi aP l aye r i nte r f ace

l SynchPlayback (CodeGear C++ Builder 6 and 2009)
l VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
l VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
l VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)

Expor t p i c tur e da ta

l MediaPlayerExport (CodeGear Delphi 7 and 2009)
l MPEGExport (CodeGear Delphi 7 and 2009)
l VS2008NET_MediaPlayerExport (Microsoft Visual Studio 2008, C#)
l VS2010NET_MediaPlayerExport (Microsoft Visual Studio 2010, C#)

Contr o l PTZ cams

l Telecontrol (CodeGear Delphi 7 and 2009)

F e tch a use r b l ock i ng l i s t f r om the se r ve r

l UserBlockingList (CodeGear C++ Builder 6 and 2009)

Decompress l i ve and r ecor ded medi a w i th the o f f s c r een
v i ewer

l OffscreenViewer (CodeGear Delphi 7 and 2009)
l VS2008CPP_OffscreenViewer (Microsoft Visual Studio 2008, C++, MFC)

l VS2008CPP_OffscreenViewer_Console (Microsoft Visual Studio 2008, C++)
l VS2008NET_OffscreenViewer (Microsoft Visual Studio 2008, C#)
l VS2010NET_OffscreenViewer (Microsoft Visual Studio 2010, C#)

Decompress r aw l i ve medi a by us i ng the DBI

l VS2008CPP_RawLiveStreamDecompress (Microsoft Visual Studio 2008, C++,
MFC)

l VS2008CPP_RawLiveStreamDecompress_Console (Microsoft Visual Studio 2008,
C++)

Cr ea te a gene r a l se r v i ce appl i ca t i on

l WindowsService (CodeGear C++ Builder 6 and 2009)
l VS2008CPP_ServiceFrameworkDemo (Microsoft Visual Studio 2008, C++)
l VS2008NET_ServiceFrameworkDemo (Microsoft Visual Studio 2008, C#)
l VS2010NET_ServiceFrameworkDemo (Microsoft Visual Studio 2010, C#)

Ful l -dupl ex audi o communi ca t i on be tween GeV i Scope com-
ponents

The AudioBackChannel GeViScope Server Plugin (Visual Studio 2010) is an example for a
GeViScope Server plugin. It realizes a full-duplex audio communication between different
GeViScope components. The full scope of operation can be found in the document Audio
Back Channel (ABC) Plugin documentation.

Simul a te medi a channe l s i n GeV i Scope se r ve r s

TheMCS (Media Channel Simulator) GeViScope Server Plugin (CodeGear C++ Builder 6)
is another example for a GeViScope Server plugin. It shows how to channel media data
inside the GeViScope system without using special video hardware. In addition the handling
of actions inside a server plugin is demonstrated. The full scope of operation can be found in
the document MCS Documentation.

Simul a te a sc r een save r as a Gev i Scope Ser ve r P l ugi n

The DelphiScreenSaverPlugin GeViScope Server Plugin (CodeGear Delphi 7) is another
example to demonstrate channelingmedia into a GeViScope Server with the help of a
Server Plugin.

Pr ov i de a cus tomi zed da ta f i l te r d i a l og i n GSCVi ew

GSCView offers the possibility to integrate customized data filter dialogs. Data filter dialogs
are used to search and filter video footage by additional event data. They can be customized
to the different business environments in which GeViScope is used. Detailed information
can be found in the document GSCView data filter plugins.
The following examples demonstrate how to create customized data filter dialogs:

l SimpleGSCViewDataFilter (CodeGear Delphi 7 and 2009)
l GSCViewDataFilter (CodeGear Delphi 7 and 2009)
l VS2008CPP_SimpleGSCViewDataFilter (Microsoft Visual Studio 2008, C++, MFC)

Pr esent i ng GEUTEBRÜCK Backup F i l e s (GBF)

l VS2008CPP_SimpleGBFViewer (Microsoft Visual Studio 2008, C++, MFC)
l SimpleGBFViewer (CodeGear Delphi 2009)
l VS2008NET_SimpleGBFViewer (Microsoft Visual Studio 2008, C#)

Moni to r the s ta te o f medi a channe l s (camer as)

l ResourceStateMonitor (CodeGear Delphi 2009)

Examples grouped by development platforms
CodeGear C++ Bui l de r 6 and 2009 ©

l LiveStream
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Handling events

l GSCActions
Connect to and disconnect from aGeViScope server
Handling actions

l SynchPlayback
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Handling events
Synchronized display of more than onemedia channels

l UserBlockingList
Connect to and disconnect from aGeViScope server
Fetch a user blocking list from the server

l WindowsService
WindowsService (CodeGear C++ Builder 6 and 2009)

l TheMCS(Media Channel Simulator) GeViScope Server Plugin is another example
for a GeViScope Server plugin. It shows how to channel media data inside the GeViS-
cope system without using special video hardware. In addition the handling of
actions inside a server plugin is demonstrated. The full scope of operation can be
found in the document MCS Documentation.

CodeGear De l phi 7, 2005 und 2009 ©

l SimpleClient
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface

l Backup
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Creating backups

l MediaPlayerExport
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Export picture data

l MPEGExport
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server

Export picture data
l Telecontrol

Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Handling actions
Control PTZ cams

l OffscreenViewer
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Decompress live and recordedmedia
Custom draw

l The SimpleGSCViewDataFilter andGSCViewDataFilter example are examples for
customized data filter dialogs of GSCView. Detailed information can be found in the
document GSCView data filter plugins.

l SimpleGBFViewer (only Delphi 2009)
Open and close aGEUTEBRÜCK Backup Files (GBF)
enumerate existingmedia channels in the GBF file
Display media with theMediaPlayer interface

l ResourceStateMonitor (only Delphi 2009)
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
monitor the state of media channels (cameras)
Handling actions

Mi c r oso f t V i sua l Studi o 2005, C++, MFC ©

l GSCLiveStream
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface

Mi c r oso f t V i sua l Studi o 2005, C++, CLI ©

l The VSIPCamPlugin GeViScope Server Plugin is an example to show how simple it
is to channel some pictures from an IP cam into a GeViScope server

Mi c r oso f t V i sua l Studi o 2008, C++, MFC ©

l VS2008CPP_SimpleClient
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Custom draw

l VS2008CPP_OffscreenViewer
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Decompress live and recordedmedia
Custom draw

l VS2008CPP_ActionsAndEvents
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Handling actions

Handling events
Display recorded event media with theMediaPlayer interface

l VS2008CPP_SimpleGBFViewer
Open and close aGEUTEBRÜCK Backup Files (GBF)
enumerate existingmedia channels in the GBF file
Display media with theMediaPlayer interface

l The VS2008CPP_SimpleGSCViewDataFilter example is an example for a cus-
tomized data filter dialog of GSCView. Detailed information can be found in the doc-
ument GSCView data filter plugins.

l VS2008CPP_RawLiveStreamDecompress_Console
Receiving live streams by using the DBI
Decompressing frames by means of the decompressor object of the GscMe-
diaPlayer-DLL

l VS2008CPP_OffscreenViewer_Console
Using the OffscreenViewer to receive a live stream in a console application
OffscreenViewer provides a decompressed image in a callback
Only the picture ID (PicID) of the image will be displayed in the console

l VS2008CPP_RawLiveStreamDecompress_Console
Receiving live streams by using the DBI
Decompressing frames by means of the decompressor object of the GscMe-
diaPlayer-DLL

l VS2008CPP_OffscreenViewer_Console
Using the OffscreenViewer to receive a live stream in a console application
OffscreenViewer provides a decompressed image in a callback
Only the picture ID (PicID) of the image will be displayed in the console

Mi c r oso f t Ac t i veX ©

l GscViewer (ActiveX Control)
Encapsulating of GeViScope functionality into an ActiveX control

l ActiveX_DOTNETClient
Invocation of the GscViewer ActiveX control from C#

l ActiveX_HTML_Page
Invocation of the GscViewer ActiveX control from inside a web page (html)

l ActiveX_VB6Client (deprecated)
Invocation of the GscViewer ActiveX control from inside a VB6 application

l ActiveX_VB6MultiClient (deprecated)
Invocation of several GscViewer ActiveX control from inside a VB6 application

Mi c r oso f t V i sua l Studi o 2008, C# ©

l VS2008NET_SimpleClient
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Custom draw

l VS2008NET_ActionsAndEvents
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Handling actions
Handling events
Display recorded event media with theMediaPlayer interface

l VS2008NET_OffscreenViewer
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Decompress live and recordedmedia
Custom draw

l VS2008NET_RawDBDecompress
Fetching database records
Decompressing the fetched records as fast as possible

l VS2008NET_MediaPlayerExport
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Export picture data

l VS2008NET_SimpleGBFViewer
Open and close aGEUTEBRÜCK Backup Files (GBF)
enumerate existingmedia channels in the GBF file
Display media with theMediaPlayer interface

l The VS2010NET_ServiceFrameworkDemo example
is an example for a general service application. Services based on the
GEUTEBRÜCK
Service Framework behave like all GEUTEBRÜCK product

l VS2008NET_GscRegEdit
Simple GeViScope registry editor
Connect to a GeViScope server
Modify GeViScope settings using the GeViScope registry
Export settings to GeViScope registry file format

l VS2008NET_GscRegistryBasics
Simple demonstration in using the GeViScope registry
Reading out media channels
Add a value to the GeViScope registry
Saving the GeViScope registry

Mi c r oso f t V i sua l Studi o 2008, C#, WPF ©

l VS2008WPF_SimpleClient
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface

Mi c r oso f t V i sua l Studi o 2010, C++

l VS2010CPP_ConfigReader
l VS2010CPP_ControlBlockingFilters

Mi c r oso f t V i sua l Studi o 2010, C# ©

l VS2010NET_SimpleClient
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface
Custom draw

l VS2010NET_ActionsAndEvents
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels and event types from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface

Handling actions
Handling events
Display recorded event media with theMediaPlayer interface

l VS2010NET_OffscreenViewer
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Decompress live and recordedmedia
Custom draw

l VS2010NET_RawDBDecompress
Fetching database records
Decompressing the fetched records as fast as possible

l VS2010NET_MediaPlayerExport
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Export picture data

l VS2010NET_SimpleGBFViewer
Open and close aGEUTEBRÜCK Backup Files (GBF)
enumerate existingmedia channels in the GBF file
Display media with theMediaPlayer interface

l The VS2010NET_ServiceFrameworkDemo
example is an example for a general service application. Services based on
theGEUTEBRÜCK Service Framework behave like all GEUTEBRÜCK
product services.

l VS2010NET_GscRegEdit
Simple GeViScope registry editor
Connect to a GeViScope server
Modify GeViScope settings using the GeViScope registry
Export settings to GeViScope registry file format

l VS2010NET_GscRegistryBasics
Simple demonstration in using the GeViScope registry
Reading out media channels
Add a value to the GeViScope registry
Saving the GeViScope registry

Mi c r oso f t V i sua l Studi o 2010, C#, WPF ©

l VS2010WPF_SimpleClient
Connect to and disconnect from aGeViScope server
enumerate existingmedia channels from aGeViScope server
Display live and recordedmedia with theMediaPlayer interface

Action documentation
The following chapter contains a short overview about the existing GEUTEBRÜCK actions
and there parameter descriptions.

ATM / ACS

ACS access denied

Action name:ACSAccessDenied(ACSName, ACSNo, Account, BancCode, CardNo,
TimeStamp, Reason)Action category: logical ACS access denied.
Parameter Function
ACS ACSName ACS name.
ACS no ACSNo ACS no.
account Account Account no.
bank code BancCode Bank code.
card no CardNo Card no.
time stamp TimeStamp Time stamp.
reason Reason Reason.

ACS access granted

Action name:ACSAccessGranted(ACSName, ACSNo, Account, BancCode, CardNo,
TimeStamp)Action category: logical
ACS access granted.
Parameter Function
ACS ACSName ACS name.
ACS no ACSNo ACS no.
account Account Account no.
bank code BancCode Bank code.
card no CardNo Card no.
time stamp TimeStamp Time stamp.

ACS raw answer

Action name:ACSRawAnswer(ACSName, TimeStamp, ACSData)Action category: logical
ACS raw answer.
Parameter Function
ACS ACSName ACS name.
time stamp TimeStamp Time stamp.
answer ACSData ACS answer.

ACS raw data

Action name:ACSRawData(ACSName, TimeStamp, ACSData)Action category: logical

ACS raw data.
Parameter Function
ACS ACSName ACS name.
time stamp TimeStamp Time stamp.
data ACSData ACS data.

ATM raw answer

Action name:ATMRawAnswer(ATMName, TimeStamp, ATMData)Action category: logical
ATM raw answer.
Parameter Function
ATM ATMName ATM name.
time stamp TimeStamp Time stamp.
answer ATMData ATM answer.

ATM raw data

Action name:ATMRawData(ATMName, TimeStamp, ATMData)Action category: logical
ATM raw data.
Parameter Function
ATM ATMName ATM name.
time stamp TimeStamp Time stamp.
data ATMData ATM data.

ATM transaction

Action name:ATMTransaction(ATMName, NewTransaction, Photostep, ATMNo, Account,
BancCode, CardNo, TAN1, TAN2, TimeStamp1, TimeStamp2, Amount, Currency)Action
category: logical ATM transaction.
Parameter Function
ATM ATMName ATM name.
new transaction NewTransaction New transaction.
photostep Photostep Photostep.
ATM no ATMNo ATM no.
account Account Account no.
bank code BancCode Bank code.
card no CardNo Card no.
tan 1 TAN1 TAN 1.
tan 2 TAN2 TAN 2.
time stamp 1 TimeStamp1 Time stamp 1.
time stamp 2 TimeStamp2 Time stamp 2.
amount Amount Amount.
currency Currency Currency.

Audio control
All actions to control the audio streams, also all notifications about the state change of the
audio streams.

ABC connect
Action name:ABCConnect(Address)Action category: logical Connect audio back channel.
Parameter Function
address Address Address of the remote server.

ABC disconnect
Action name:ABCDisconnect()Action category: logical Disconnect audio back channel.

ABC play file
Action name:ABCPlayFile(FileID, FileName, AutoRepeat)Action category: logical Play file
on audio back channel.
Parameter Function
file id FileID File ID.
file name FileName Name of the file.
repeat AutoRepeat Repeat file automatically

Sensor audio alarm
Action name:SensorAudioAlarm(Channel)Action category: logical Audio alarm detected.
Parameter Function
channel Channel Channel.

Backup actions
All actions for backup.

Abort all auto backups
Action name:AbortAllAutoBackups()Action category: logical Abort all auto backups.

Abort auto backup
Action name:AbortAutoBackup(Schedule)Action category: logical Abort auto backup.
Parameter Function
schedule Schedule Schedule.

Auto backup capacity warning
Action name:AutoBackupCapacityMonitoringCapacityWarning(Warning, Destination,
TotalCapacity, FreeCapacity, AllocatedByGbf, PercentFree, PercentAllocated, Per-

centAllocatedByGbf)Action category: logical Auto backup capacity monitoring: capacity
warning.
Parameter Function
warning Warning Warning.
destination Destination Destination.
total capacity TotalCapacity Total capacity.
free capacity FreeCapacity Free capacity.
allocated by GBF AllocatedByGbf Allocated by GBF.
percent free PercentFree Percent free.
percent allocated PercentAllocated Percent allocated.
percent allocated by GBF PercentAllocatedByGbf Percent allocated by GBF.

Auto backup capacity file auto deleted
Action name:AutoBackupCapacityMonitoringFileAutoDeleted(Warning, Destination,
TotalCapacity, FreeCapacity, AllocatedByGbf, PercentFree, PercentAllocated, Per-
centAllocatedByGbf, FileSize, FileName)Action category: logical Auto backup capacity
monitoring: file auto deleted.
Parameter Function
warning Warning Warning.
destination Destination Destination.
total capacity TotalCapacity Total capacity.
free capacity FreeCapacity Free capacity.
allocated by GBF AllocatedByGbf Allocated by GBF.
percent free PercentFree Percent free.
percent allocated PercentAllocated Percent allocated.
percent allocated by GBF PercentAllocatedByGbf Percent allocated by GBF.
file size FileSize File size.
file name FileName File name.

Auto backup capacity out of disk space
Action name:AutoBackupCapacityMonitoringOutOfDiskSpace(Warning, Destination,
TotalCapacity, FreeCapacity, AllocatedByGbf, PercentFree, PercentAllocated, Per-
centAllocatedByGbf)Action category: logical Auto backup capacity monitoring: out of disk
space.
Parameter Function
warning Warning Warning.
destination Destination Destination.
total capacity TotalCapacity Total capacity.
free capacity FreeCapacity Free capacity.
allocated by GBF AllocatedByGbf Allocated by GBF.
percent free PercentFree Percent free.
percent allocated PercentAllocated Percent allocated.
percent allocated by GBF PercentAllocatedByGbf Percent allocated by GBF.

Auto backup file done
Action name:AutoBackupFileDone(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, OperationIndex, OperationStartTime, Source, Destination, FileS-
izeLimit, BandWidthLimit, FileIndex, FileName, FileSize)Action category: logical Auto
backup progress notification: file done.
Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
operation count OperationCount Operation count.
timer start TimerStart Timer start.
operation index OperationIndex Operation index.
operation start time OperationStartTime Operation start time.
source Source Source.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
file index FileIndex File index.
file name FileName File name.
file size FileSize File size.

Auto backup file progress
Action name:AutoBackupFileProgress(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, OperationIndex, OperationStartTime, Source, Destination, FileS-
izeLimit, BandWidthLimit, FileIndex, FileName, FileSize)Action category: logical Auto
backup progress notification: file progress.

Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
operation count OperationCount Operation count.
timer start TimerStart Timer start.
operation index OperationIndex Operation index.
operation start time OperationStartTime Operation start time.
source Source Source.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
file index FileIndex File index.
file name FileName File name.
file size FileSize File size.

Auto backup file started
Action name:AutoBackupFileStarted(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, OperationIndex, OperationStartTime, Source, Destination,

FileSizeLimit, BandWidthLimit, FileIndex, FileName)Action category: logical Auto backup
progress notification: file started.
Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
operation count OperationCount Operation count.
timer start TimerStart Timer start.
operation index OperationIndex Operation index.
operation start time OperationStartTime Operation start time.
source Source Source.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
file index FileIndex File index.
file name FileName File name.

Auto backup operation done
Action name:AutoBackupOperationDone(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, OperationIndex, OperationStartTime, OperationStopTime, Source,
Destination, FileSizeLimit, BandWidthLimit)Action category: logical Auto backup progress
notification: operation done.

Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
operation count OperationCount Operation count.
timer start TimerStart Timer start.
operation index OperationIndex Operation index.
operation start time OperationStartTime Operation start time.
operation stop time OperationStopTime Operation stop time.
source Source Source.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.

Auto backup operation started
Action name:AutoBackupOperationStarted(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, OperationIndex, OperationStartTime, Source, Destination, FileS-
izeLimit, BandWidthLimit)Action category: logical Auto backup progress notification:
operation started.
Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
operation count OperationCount Operation count.

Parameter Function
timer start TimerStart Timer start.
operation index OperationIndex Operation index.
operation start time OperationStartTime Operation start time.
source Source Source.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.

Auto backup schedule done
Action name:AutoBackupScheduleDone(Schedule, StartTime, EffectiveStartTime,
StopTime, OperationCount, TimerStart)Action category: logical Auto backup progress noti-
fication: schedule done.

Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
stop time StopTime Schedule stop time.
operation count OperationCount Operation count.
timer start TimerStart Timer start.

Auto backup schedule started
Action name:AutoBackupScheduleStarted(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart)Action category: logical Auto backup progress notification: schedule
started.
Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.
effective start time EffectiveStartTime Effective schedule start time.
operation count OperationCount Operation count.
timer start TimerStart Timer start.

Backup event
Action name:BackupEvent(EventID, TypeID, Destination, StartHintID, StopHintID, Sub-
folder)Action category: logical Backup event.
Parameter Function
instance ID EventID Instance ID of the event.
event type TypeID Type of the event.
destination Destination Destination.
start hint ID StartHintID Optional start hint ID.
stop hint ID StopHintID Optional stop hint ID.
sub folder Subfolder Sub folder to backup event.

Event backup done
Action name:EventBackupDone(JobID, EventTypeID, EventID, Destination, FileSizeLimit,
BandWidthLimit, StartTime, StopTime)Action category: logical Event backup progress noti-
fication: backup done.
Parameter Function
job ID JobID Backup job ID.
event type EventTypeID Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
start time StartTime Backup start time.
stop time StopTime Backup stop time.

Event backup file done
Action name:EventBackupFileDone(JobID, EventTypeID, EventID, Destination, FileS-
izeLimit, BandWidthLimit, StartTime, FileIndex, FileName, FileSize)Action category:
logical Event backup progress notification: file done.
Parameter Function
job ID JobID Backup job ID.
event type EventTypeID Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
start time StartTime Effective backup start time.
file index FileIndex File index.
file name FileName File name.
file size FileSize File size.

Event backup file progress
Action name:EventBackupFileProgress(JobID, EventTypeID, EventID, Destination, FileS-
izeLimit, BandWidthLimit, StartTime, FileIndex, FileName, FileSize)Action category:
logical Event backup progress notification: file progress.
Parameter Function
job ID JobID Backup job ID.
event type EventTypeID Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
start time StartTime Effective backup start time.
file index FileIndex File index.
file name FileName File name.
file size FileSize File size.

Event backup file started
Action name:EventBackupFileStarted(JobID, EventTypeID, EventID, Destination, FileS-
izeLimit, BandWidthLimit, StartTime, FileIndex, FileName)Action category: logical Event
backup progress notification: file started.
Parameter Function
job ID JobID Backup job ID.
event type EventTypeID Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
start time StartTime Effective backup start time.
file index FileIndex File index.
file name FileName File name.

Event backup started
Action name:EventBackupStarted(JobID, EventTypeID, EventID, Destination, FileS-
izeLimit, BandWidthLimit, StartTime)Action category: logical Event backup progress noti-
fication: backup started.
Parameter Function
job ID JobID Backup job ID.
event type EventTypeID Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.
file size limit FileSizeLimit File size limit.
band width limit BandWidthLimit Band width limit.
start time StartTime Backup start time.

Start auto backup
Action name:StartAutoBackup(Schedule)Action category: logical Start auto backup.
Parameter Function
schedule Schedule Schedule.

Camera control
Actions to set and control PTZ/normal cameras.

Note: Which camera types are supported always depends on model and man-
ufacturer !

Auto focus off
Action name: AutoFocusOff(PTZ Head)
Action category: command
This action disables the auto-focus function of the camera.

Parameter Function
PTZ head Camera Global camera number

Auto focus on
Action name:AutoFocusOn(PTZ Head)
Action category: command
This action enables the auto-focus function of the camera.
Parameter Function
PTZ head Camera Global camera number

Camera backlight compensation mode
Action name: CameraBacklightCompensationMode(PTZ Head, mode)
Category: command
This action changes the backlight compensation of the camera.
Parameter Function
PTZ head Camera Global camera number
mode Mode off=backlight compensation is turned off

on=backlight compensation is turned on

Camera clear preset text
Action name: CameraClearPresetText(PTZ Head, position)
Category: command
This action clears the text that was previously defined and assigned to a particular camera
position by the action “CameraSetPresetText” and displayed when the cameramoves to
this position.
Parameter Function
PTZ head Camera Global camera number
position Position Number of the camera position for which the

previously defined text (by the action “Cam-
eraSetPresetText”) has to be cleared.

Camera day/night mode
Action name: CameraDayNightMode(PTZ Head, mode)
Category: command
This action changes the day/night mode of the camera.
Parameter Function
PTZ head Camera Global camera number
mode Mode day=day mode is activated

night=night mode is activated
auto=the camera changes automatically
between day and night mode

Camera light off
Action name: CameraLightOff(PTZ Head)
Category: command
This action turns the camera light off.

Parameter Function
PTZ head Camera Global camera number

Camera light on
Action name: CameraLightOn(PTZ Head)
Category: command
This action turns the camera light on.
Parameter Function
PTZ head Camera Global camera number

Camera manual iris off
Action name: CameraManualIrisOff(PTZ Head)
Category: command
This action disables the option to adjust the camera iris manually.
Parameter Function
PTZ head Camera Global camera number

Camera manual iris on
Action name: CameraManualIrisOn(PTZ Head)
Category: command
This action enables the option to adjust the camera iris manually.
Parameter Function
PTZ head Camera Global camera number

Camera off
Action name: CameraOff(PTZ Head)
Category: command
This action turns off the camera.
Parameter Function
PTZ head Camera Global camera number

Camera on
Action name: CameraOn(PTZ Head)
Category: command
This action turns on the camera.
Parameter Function
PTZ head Camera Global camera number

Camera pump off
Action name: CameraPumpOff(PTZ Head)
Category: command
This action disables the pump of the camera.
Parameter Function
PTZ head Camera Global camera number

Camera pump on
Action name: CameraPumpOn(PTZ Head)
Category: command
This action enables the pump of the camera.
Parameter Function
PTZ head Camera Global camera number

Camera RAW output
Action name: CameraRAWOutput(PTZ Head, output)
Category: command
This action sends a raw string (parameter output) to the camera.
Parameter Function
PTZ head Camera Global camera number
output Output raw string

The following escape sequences are sup-
ported:
\\a, b, f, n, r, t, v => \ a, b, f, n, r, t, v
\\\=> \\
\\‘ => \‘
\“ => \“
\Xhh or \xhh => ASCII-character

Camera select char mode
For internal use only

Camera set preset text
Action name: CameraSetPresetText(PTZ Head, position)
Category: command
With this action, one defines the text that is associated with a particular camera position
and displayed when the cameramoves to this position.
Parameter Function
PTZ head Camera Global camera number
position Position Number of the camera for which the text is

defined.

Camera spec func U off
Action name: CameraSpecFuncUOff(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func U on
Action name: CameraSpecFuncUOn(PTZ Head)
Category: command

Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func V off
Action name: CameraSpecFuncVOff(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func V on
Action name: CameraSpecFuncVOn(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func X off
Action name: CameraSpecFuncXOff(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func X on
Action name: CameraSpecFuncXOn(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func Y off
Action name: CameraSpecFuncYOff(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera spec func Y on
Action name: CameraSpecFuncYOn(PTZ Head)
Category: command
Special functions aremapped to this action.
(MBeg functions X, Y, U and V).
Parameter Function
PTZ head Camera Global camera number

Camera stop all
Action name: CameraStopAll(PTZ Head)
Category: command
This action stops all movements of the camera.
Parameter Function
PTZ head Camera Global camera number

Camera text off
Action name: CameraTextOff(PTZ Head)
Category: command
This action turns off the text display of the camera.
Parameter Function
PTZ head Camera Global camera number

Camera text on
Action name: CameraTextOn(PTZ Head)
Category: command
This action turns on the text display of the camera.
Parameter Function
PTZ head Camera Global camera number

Camera tour start
Action name: CameraTourStart(PTZ Head, tour ID, tour name)
Category: command
This action starts a pre-defined tour.
Parameter Function
PTZ head Camera Global camera number
tour id TourID Tour id.
tour name TourName Tour name.

Camera tour stop
Action name: CameraTourStop(PTZ Head)
Category: command
This action stops a running tour.
Parameter Function
PTZ head Camera Global camera number

Camera version off
Action name: CameraVersionOff(PTZ Head)
Category: command
With this action the firmware version of the camera will be hidden.
Parameter Function
PTZ head Camera Global camera number

Camera version on
Action name: CameraVersionOn(PTZ Head)
Category: command
With this action the firmware version of the camera will be shown as OSD.
Parameter Function
PTZ head Camera Global camera number

Camera wash-wipe off
Action name: CameraWashOff(PTZ Head)
Category: command
This action disables the functions “wash” and “wipe”.
Parameter Function
PTZ head Camera Global camera number

Camera wash-wipe on
CameraWashWhipeOn
Action name: CameraWashOn(PTZ Head)
Category: command
This action enables the functions “wash” and “wipe”.
Parameter Function
PTZ head Camera Global camera number

Move to default position
Action name:DefaultPosCallUp(Camera)
Action category: command
The PTZ cameramoves back to the home position (usually position 1).
Therefor the home position has to be set and saved in advance by the action "SaveDe-
faultPosition".
Parameter Function
PTZ head Camera Global camera number

Clear default position
Action name: ClearDefaultPosition(PTZ Head)
Category: command
This action deletes the currently defined default position.
Parameter Function
PTZ head Camera Global camera number

Clear preset position
Action name: CameraPresetPosition(PTZ Head, position)
Category: command
This action deletes a position previously saved by the action “SavePresetPosition”.
Parameter Function
PTZ head Camera Global camera number
position Number of camera position to be deleted.

Save default position
Action name: SaveDefaultPosition(PTZ Head)
Category: command
This action saves the current position of the camera as default position.
Parameter Function
PTZ head Camera Global camera number

Fast speed off
Action name: FastSpeedOff(PTZ Head)
Category: command
This action switches from high-speed of the camera to normal speed of the camera.
Parameter Function
PTZ head Camera Global camera number

Fast speed on
Action name: FastSpeedOn(PTZ Head)
Category: command
This action switches from normal speed of the camera to high-speed of the camera.
Parameter Function
PTZ head Camera Global camera number

Focus far
Action name:FocusFar(Camera, Speed)
Action category: command
The camera focus adjusts on far.
Parameter Function
PTZ head Camera Global camera number
speed Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Focus near
Action name:FocusNear(Camera, Speed)
Action category: command
The camera focus adjusts on near.

Parameter Function
PTZ head Camera Global camera number
speed Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Focus stop
Action name:FocusStop(Camera)
Action category: command
The camera stops the focusing process.
Parameter Function
PTZ head Camera Global camera number

Iris close
Action name:IrisClose(Camera)
Action category: command
The camera closes the aperture.
Parameter Function
PTZ head Camera The camera closes the aperture

Iris open
Action name:IrisOpen(Camera)
Action category: command
The camera opens the aperture.
Parameter Function
PTZ head Camera The camera opens the aperture

Iris stop
Action name:IrisStop(Camera)
Action category: command
The camera stops closing/opening aperture.
Parameter Function
PTZ head Camera The camera stops

closing/opening
aperture

Move to absolute position
For internal use only

Move to by speed
For internal use only

Move to relative position
For internal use only

Pan auto
Action name:PanAuto(Camera, Modus)
Action category: command
Cameras without automatic end stop turn on and on until this function is stopped through the
action "PanStop". Cameras with automatic end stop do stop automatically after a 360 turn.
It depends on the camera type if this function is even available and in case how it is going to
be accomplished.
Parameter Function
PTZ head Camera Global camera number
modus Modus Depends on camera type (model and man-

ufacturer)

Pan left
Action name:PanLeft(Camera, Speed)
Action category: command
The camera pans to the left.
Parameter Function
PTZ head Camera Global camera number
modus Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Pan right
Action name:PanRight(Camera, Speed)
Action category: command
The camera pans to the right.
Parameter Function
PTZ head Camera Global camera number
modus Speed Pan speed.

Pan stop
Action name:PanStop(Camera)
Action category: command
The camera stops panmovement.
Parameter Function
PTZ head Camera Global camera number

Move to preset position
Action name:PrePosCallUp(Camera, Position)
Action category: command
The cameramoves to a preset position determined in advance through the action "SavePre-
setPosition".
Parameter Function
PTZ head Camera Global camera number
position Position Number of selected preset position.

The amount of positions to save depends on

Parameter Function
the camera type (model and manufacturer).

Clear preset position
Action name:PrePosClear(Camera, Position)
Action category: command
Clear camera preset position.
Parameter Function
PTZ head Camera Global camera number
position Position Preset position.

Save preset position
Action name:PrePosSave(Camera, Position)
Action category: command
Saves current position of the PTZ camera as a preset position.
Parameter Function
PTZ head Camera Global camera number
position Position Number of preset position on which the cur-

rent position of the camera should be saved.
The amount of positions to save depends on
the camera type (model and manufacturer).

Set camera text
Action name: SaveCameraText(PTZ Head, text)
Category: command
This action saves the camera description in accordance with the parameter “text”.
Parameter Function
PTZ head Camera Global camera number
text Text Text to be displayed on the camera as OSD.

Tilt down
Action name:TiltDown(Camera, Speed)
Action category: command
The camera tilts down.
Parameter Function
PTZ head Camera Global camera number
speed Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Tilt stop
Action name:TiltStop(Camera)
Action category: command
The camera stops the tilt movement.
Parameter Function
PTZ head Camera Global camera number

Tilt up
Action name:TiltUp(Camera, Speed)
Action category: command
The camera tilts up.
Parameter Function
PTZ head Camera Global camera number
speed Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Zoom in
Action name:ZoomIn(Camera, Speed)
Action category: command
The Camera zooms in (tele range).
Parameter Function
PTZ head Camera Global camera number
speed Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Zoom out
Action name:ZoomOut(Camera, Speed)
Action category: command
The camera zooms out (wide-angle range).
Parameter Function
PTZ head Camera Global camera number
speed Speed Depending on the protocol of camera man-

ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Zoom stop
Action name:ZoomStop(Camera)
Action category: command
The camera stops zooming process.
Parameter Function
PTZ head Camera Global camera number

Cash management actions
CashManagement Actions offer the exchange of accompanyingmeta data between Cash
Management Systems andGeViScope/Re_porter. With these actions money handling pro-
cesses can be documented consistently via video. The use of these actions for starting and
restarting of event recordings leads to the display of the accompanying video data in live

streams of GscView and the storage of those in the video database. The video sequences
recorded by CashManagement Actions can later be recovered easily in GscView by using
the accompanyingmeta data and a special data filter dialog.

Safebag close
Action name:SafebagClose(WorkingPlace, StartTime, StopTime, SafebagNo, Safe-
bagInfo, StepID, Debit, Total, Difference, HasDifference, Notes, Coins, Cheques)
Action category: logical
Safebag close.
The integrated CashManagement System sends the action as soon as the user has fin-
ished the counting of one safe bag and has confirmed that to the CashManagement System
.
Via the parameter "working place" the affected working place will be identified. The further
parameter will be provided with accompanying video data by CashManagement System.
The parameter "StepID" can be provided with a code figure by the CashManagement Sys-
tem for the currently running process step.

Parameter Function
working
place

WorkingPlace Working place no.

start time StartTime Time stamp, when the handling of the safe bag began.
stop time StopTime Time stamp, when the handling of the safe bag stopped.
safebag
no.

SafebagNo Alphanumerical identification of safe bag; search criteria in GscView

safebag
info

SafebagInfo Additional alphanumerical identification of safe bag

step id StepID Code figure for the currently running process step (given by Cash Man-
agement System individually)

debit Debit Debit amount of safebag
total Total Effective total amount of safe bag according to counting (will be accu-

mulated by Cash Management Systems on counting)
difference Difference Difference between total amount and result respectively progress of

counting
has dif-
ference

HasDifference Yes = current total amount has a difference to debit amount
No = current total amount is identical with debit amount

notes Notes Denomination of counted banknotes. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

coins Coins Denomination of counted coins. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

cheques Cheques Denomination of counted cheques. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

Safebag data
Action name:SafebagData(WorkingPlace, StartTime, SafebagNo, SafebagInfo, StepID,
Debit, Total, Difference, HasDifference, Notes, Coins, Cheques)
Action category: command
Safebag data.
The integrated CashManagement System sends the action as soon as the user has fin-
ished counting one variety of notes or coins and has confirmed that to the system.
Via the parameter "working place" the affected working place will be identified. The further
parameter will be provided with accompanyingmeta data by the CashManagement Sys-
tem.
The parameter "StepID" can be provided with a code figure by the CashManagement Sys-
tem for the currently running process step.

Parameter Function
working
place

WorkingPlace Working place no.

start time StartTime Time stamp, when the handling of the safe bag began.
safebag
no.

SafebagNo Alphanumerical identification of safe bag; search criteria in GscView

safebag
info

SafebagInfo Additional alphanumerical identification of safe bag

step id StepID Code figure for the currently running process step (given by cash man-
agement system individually

debit Debit Debit amount of safe bag
total Total Effective total amount of safe bag according to counting (will be accu-

mulated by the Cash management System during counting)
difference Difference Difference between total amount and result respectively progress of

counting
has dif-
ference

HasDifference Yes = current total amount has a difference to debit amount
No = current total amount is identical with debit amount

notes Notes Denomination of counted banknotes. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

coins Coins Denomination of counted coins. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

cheques Cheques Denomination of counted cheques. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

Safebag open
Action name:SafebagOpen(WorkingPlace, StartTime, SafebagNo, SafebagInfo, StepID)
Action category: notification
Safebag open.
The integrated CashManagement System sends the action as soon as the user has opened
the safe bag and confirmed that with an entry in the CashManagement System.

The affectedWorking Place will be identified via the parameter "Working place". Further
parameters will be filled with accompanyingmeta data on the part of the CashManagement
System.
The Parameter "StepID" can be addressed by the CashManagement System with a code
figure for the currently running process step.

Parameter Function
working
place

WorkingPlace Working place no.

start time StartTime Time stamp, when the handling of the safe bag began.
safebag
no.

SafebagNo Alphanumerical identification of safe bag; search criteria in GscView

safebag
info

SafebagInfo Additional alphanumerical identification of safe bag

step id StepID Code figure for the currently running process step (given by cash man-
agement system individually

Safebag passing of risk data
Action name:SafebagPassingOfRiskData(WorkingPlace, StartTime, SafebagNo, Safe-
bagInfo, StepID, UserID1, UserID2, TourNumber, TargetWorkingPlace,
PassingOfRiskType)
Action category: command
The integrated CashManagement System sends the action continuously for each safe bag
while the amount of safe bags between two employees will be transferred and this will be
confirmed to the CashManagement System. This part of themoney handling process is a
"passing of risk". Via the parameter "working place" the affected transfer place and respect-
ively the working place will be identified. The further parameters will be filled with accom-
panying video data by the CashManagement System. The parameter "StepID" can be
provided with a code figure by the CashManagement System for the currently running pro-
cess step.

Parameter Function
working
place

WorkingPlace Working place no.

start time StartTime Time stamp, when the handling of the safe bag began.
safebag no. SafebagNo Alphanumerical identification of safe bag; search criteria in

GscView
safebag
info

SafebagInfo Additional alphanumerical identification of safe bag

step id StepID Code figure for the currently running process step (given by
cash management system individually

user 1 UserID1 Number of employee, transferring the safe bag to another
employee.

user 2 UserID2 Number of employee, who receives the safe bag from another
employee.

tour no TourNumber Tour-Number (optional)
target work-
ing place

TargetWorkingPlace Alphanumerical identification of a place respectively a working
place where safe bags will be transferred to (optional)

passing of
risk type

PassingOfRiskType Detailed information to "passing of risk" (optional)

Safebag passing of risk start
Action name:SafebagPassingOfRiskStart(WorkingPlace, StartTime, SafebagNo, Safe-
bagInfo, StepID, UserID1, UserID2, TourNumber, TargetWorkingPlace,
PassingOfRiskType)
Action category: command
The integrated CashManagement System sends the action as soon as a number of safe
bags will be transferred between two employees and this is confirmed to the CashMan-
agement System. This part of themoney handling process is a "passing of risk". Via the
parameter "working place" the affected transfer place and respectively the working place
will be identified. The further parameters will be filled with accompanyingmeta data by the
CashManagement System. The parameter "StepID" can be provided with a code figure by
the CashManagement System for the currently running process step.

Parameter Function
working
place

WorkingPlace Working place no.

start time StartTime Time stamp, when the handling of the safe bag began.
safebag no. SafebagNo Alphanumerical identification of safe bag; search criteria in

GscView
safebag
info

SafebagInfo Additional alphanumerical identification of safe bag

step id StepID Code figure for the currently running process step (given by
cash management system individually

user 1 UserID1 Number of employee, transferring the safe bag to another
employee.

user 2 UserID2 Number of employee, who receives the safe bag from another
employee.

tour no TourNumber Tour-Number (optional)
target work-
ing place

TargetWorkingPlace Alphanumerical identification of a place respectively a working
place where safe bags will be transferred to (optional)

passing of
risk type

PassingOfRiskType Detailed information to "passing of risk" (optional)

Safebag passing of risk stop
Action name:SafebagPassingOfRiskStop(WorkingPlace, StartTime, StopTime, Safe-
bagNo, SafebagInfo, StepID, UserID1, UserID2, TourNumber, TargetWorkingPlace,
PassingOfRiskType)
Action category: command
The integrated CashManagement System sends the action closing after the last safe bag,
while the number of safe bags will be transferred between two employees and this is con-
firmed to the CashManagement System. This part of themoney handling process is a
"passing of risk". Via the parameter "Working place" the affected transfer place respective
working place will be identified. The further parameters will be filled with accompanying
video data by the CashManagement System. The parameter "StepID" can be supplied by
CashManagement System with a code figure for a currently running process step

Parameter Function
working
place

WorkingPlace Working place no.

start time StartTime Time stamp, when the handling of the safe bag began.
safebag no. SafebagNo Alphanumerical identification of safe bag; search criteria in

Parameter Function
GscView

safebag
info

SafebagInfo Additional alphanumerical identification of safe bag

step id StepID Code figure for the currently running process step (given by
cash management system individually

user 1 UserID1 Number of employee, transferring the safe bag to another
employee.

user 2 UserID2 Number of employee, who receives the safe bag from another
employee.

tour no TourNumber Tour-Number (optional)
target work-
ing place

TargetWorkingPlace Alphanumerical identification of a place respectively a working
place where safe bags will be transferred to (optional)

passing of
risk type

PassingOfRiskType Detailed information to "passing of risk" (optional)

Device information
All actions for low-level notification of the device or media channels changes.

Device found
Action name:DeviceFound(Type, Name, Serial)
Action category: logical
This action will be fired when the USB or NET device is connected to the system. It is also
fired at start-up for all detected devices.
Parameter Function
device type Type Type of the device.
device name Name Device name if assigned in setup, empty otherwise.
serial ID Serial Serial ID of the device.

New firmware received
Action name:DeviceNewFirmware(Type, Name, Serial, Firmware)
Action category: logical
This action will be fired when the USB or NET device has got the new firmware.
Parameter Function
device type Type Type of the device.
device name Name Device name if assigned in setup, empty otherwise.
serial ID Serial Serial ID of the device.
firmware serial Firmware Serial ID of the firmware.

Device plugin error
Action name:DevicePluginError(Channel, Type, SubType, Name, Serial, ErrorClass,
ErrorCode, Description)
Action category: logical
This action notifies device plugin error.
Parameter Function
channel Channel Channel.
device type Type Type of the device.
device sub type SubType Sub type of the device.

Parameter Function
device name Name Device name.
serial ID Serial Serial ID of the device.
error class ErrorClass Error class of the error occured.
error code ErrorCode Plugin type specific error code.
description Description Error description.

Device plugin state
Action name:DevicePluginState(Channel, Type, SubType, Name, Serial, State, Intern-
alState, Description)
Action category: logical
This action notifies device plugin state.
Parameter Function
channel Channel Channel.
device type Type Type of the device.
device sub type SubType Sub type of the device.
device name Name Device name.
serial ID Serial Serial ID of the device.
plugin state State New plugin device state.
internal state InternalState Plugin device specific state.
description Description State description.

Device reattached
Action name:DeviceReattached(Type, Name, Serial)
Action category: logical
This action will be fired when the USB or NET device is reattached to the system.
Parameter Function
device type Type Type of the device.
device name Name Device name if assigned in setup, empty otherwise.
serial ID Serial Serial ID of the device.

Device removed
Action name:DeviceRemoved(Type, Name, Serial)
Action category: logical
This action will be fired when the USB or NET device is disconnected from the system. It is
also fired at the start-up for all parameterized but not present devices.
Parameter Function
device type Type Type of the device.
device name Name Device name if assigned in setup, empty otherwise.
serial ID Serial Serial ID of the device.

Digital contacts
All actions for handling digital inputs and outputs.

Digital input
Action name:DigitalInput(Contact, State)

Action category: logical
This action will be fired when the state of the digital input has changed.
Parameter Function
contact Contact Contact.
state State New state.

IOI43 reset mainboard
Action name:IOI43ResetMainboard()
Action category: logical

Reset mainboard using IOI43a/ab USB Alarm-I/O.

IOI43 temperature notification
Action name:IOI43Temperature(ID, Temperature)
Action category: logical

Temperature notification from IOI43a/ab USB Alarm-I/O.
Parameter Function
ID ID ID of the IOI43 module (like IOI43-00).
temperature Temperature Temperature.

IOI43 watchdog activate
Action name:IOI43WDActivate()
Action category: logical

Activate watchdog on IOI43a/ab USB Alarm-I/O.

IOI43 watchdog deactivate
Action name:IOI43WDDeactivate()
Action category: logical

Deactivate watchdog on IOI43a/ab USB Alarm-I/O.

IOI43 watchdog trigger
Action name:IOI43WDTrigger()
Action category: logical

Trigger watchdog on IOI43a/ab USB Alarm-I/O.

Key pressed
Action name:KeyPressed(Key)
Action category: logical
This action is notified if one of the GEVISCOPE system keys is pressed.
Parameter Function
Key Key System key.

Key released
Action name:KeyReleased(Key)
Action category: logical
This action is notified if one of the GEVISCOPE system keys is released.

Parameter Function
Key Key System key.

Set digital output
Action name:SetDigitalOutput(Contact, State)
Action category: logical
This action is used tomodify the state of the digital output and to notify this change.
Parameter Function
contact Contact Contact.
state State New state.

Set system LED
Action name:SetLED(LED, State)
Action category: logical
This action is used to turn the system LEDs on or off.
Parameter Function
LED LED System LED.
state State New state.

Set system LED to blink
Action name:SetLEDBlink(LED, LedTimeOnMs, LedTimeOffMs)
Action category: logical
This action is used to blink the system LEDs.
Parameter Function
LED LED System LED.
Led time ON LedTimeOnMs Time in milliseconds the LED will be switched on.
Led time OFF LedTimeOffMs Time in milliseconds the LED will be switched off.

Lenel
Lenel OnGuard actions.

Lenel access event
Action name:LenelAccessEvent(ID, Panel, Device, SecondaryDevice, CardNumber,
AccessResult, Type, SubType, Description, SerialNumber, TimeStamp, AreaEnteredID,
AreaExitedID, AssetID, CardholderEntered, Duress, ElevatorFloor, FacilityCode, IsRead-
ableCard, IssueCode, CommServerHostName, EventText)
Action category: logical
Lenel OnGuard access event.
Parameter Function
ID ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary
device

SecondaryDevice The ID of the secondary device where this event ori-
ginated.

card number CardNumber The badge ID for the card that was read, if available.
access result AccessResult The level of access that was granted that resulted from

reading the card.

Parameter Function
type Type Event type i.e., duress, system, etc.
subtype SubType Event sub-type i.e., granted, door forced open, etc.
description Description A human readable, brief description of this event.
serial number SerialNumber A number that uniquely identifies the instance of the

event for a particular panel.
time stamp TimeStamp Time stamp.
area entered AreaEnteredID The ID of the area that was entered, if any.
area exited AreaExitedID The ID of the area that was exited, if any.
asset ID AssetID The ID of the asset related to this event, if any.
cardholder
entered

CardholderEntered Whether entry was made by the cardholder.

duress Duress Indicates whether this card access indicates an under
duress/emergency state.

elevator floor ElevatorFloor The elevator floor on which the access event was gen-
erated, if any.

facility code FacilityCode The facility code for the card that was read, if available.
readable card IsReadableCard Whether the card could be read.
issue code IssueCode The issue code for the card that was read, if available.
server host CommServerHostName Host name of the Communication server through which

the event arrived.
event text EventText Text associated with event

Lenel fire event
Action name:LenelFireEvent(ID, Panel, Device, SecondaryDevice, TroubleCode, Type,
SubType, Description, SerialNumber, TimeStamp, CommServerHostName, EventText)
Action category: logical
Lenel OnGuard fire event.
Parameter Function
ID ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary
device

SecondaryDevice The ID of the secondary device where this event ori-
ginated.

trouble code TroubleCode A trouble code associated with the fire event.
type Type Event type i.e., duress, system, etc.
subtype SubType Event sub-type i.e., granted, door forced open, etc.
description Description A human readable, brief description of this event.
serial num-
ber

SerialNumber A number that uniquely identifies the instance of the event
for a particular panel.

time stamp TimeStamp Time stamp.
server host CommServerHostName Host name of the Communication server through which the

event arrived.
event text EventText Text associated with event

Lenel intercom event
Action name:LenelIntercomEvent(ID, Panel, Device, SecondaryDevice, IntercomData,
LineNumber, Type, SubType, Description, SerialNumber, TimeStamp, Com-
mServerHostName, EventText)
Action category: logical
Lenel OnGuard intercom event.

Parameter Function
ID ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary
device

SecondaryDevice The ID of the secondary device where this event ori-
ginated.

intercom
data

IntercomData Additional data for the intercom event that occurred.

line number LineNumber The line number involved in the intercom event.
type Type Event type i.e., duress, system, etc.
subtype SubType Event sub-type i.e., granted, door forced open, etc.
description Description A human readable, brief description of this event.
serial num-
ber

SerialNumber A number that uniquely identifies the instance of the event
for a particular panel.

time stamp TimeStamp Time stamp.
server host CommServerHostName Host name of the Communication server through which the

event arrived.
event text EventText Text associated with event

Lenel raw data
Action name:LenelRawData(TimeStamp, LenelData)
Action category: logical
Lenel OnGuard raw data.
Parameter Function
time stamp TimeStamp Time stamp.
data LenelData Lenel OnGuard data.

Lenel refresh names
Action name:LenelRefreshNames()
Action category: logical
Lenel OnGuard refresh names.

Lenel security event
Action name:LenelSecurityEvent(ID, Panel, Device, SecondaryDevice, Type, SubType,
Description, SerialNumber, TimeStamp, CommServerHostName, EventText)
Action category: logical
Lenel OnGuard security event.
Parameter Function
ID ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary
device

SecondaryDevice The ID of the secondary device where this event ori-
ginated.

type Type Event type i.e., duress, system, etc.
subtype SubType Event sub-type i.e., granted, door forced open, etc.
description Description A human readable, brief description of this event.
serial num-
ber

SerialNumber A number that uniquely identifies the instance of the event
for a particular panel.

time stamp TimeStamp Time stamp.
server host CommServerHostName Host name of the Communication server through which the

event arrived.

Parameter Function
event text EventText Text associated with event

Lenel video event
Action name:LenelVideoEvent(ID, Panel, Device, SecondaryDevice, Channel, Type,
SubType, Description, SerialNumber, TimeStamp, StartTime, EndTime, Com-
mServerHostName, EventText)
Action category: logical
Lenel OnGuard video event.
Parameter Function

ID ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary
device

SecondaryDevice The ID of the secondary device where this event ori-
ginated.

channel Channel The physical channel the camera is connected to that is
creating this event.

type Type Event type i.e., duress, system, etc.
subtype SubType Event sub-type i.e., granted, door forced open, etc.
description Description A human readable, brief description of this event.
serial num-
ber

SerialNumber A number that uniquely identifies the instance of the event
for a particular panel.

time stamp TimeStamp Time stamp.
start stamp StartTime The time the video event started
end time EndTime The time the video event ended.
server host CommServerHostName Host name of the Communication server through which the

event arrived.
event text EventText Text associated with event

Logistic
Logistic actions are used in the logistic environment wheremeta data, e.g. barcodes, is
used to start recording events. Later, a research on the barcodes is done to show the scan-
ning operation in the recorded images. To speed up the search, a CRC32 checksum is used
as a hash and serves as a foreign key of the event startd. The foreign key is indexed in the
event table an can therefore be foundmuch faster than a lookup on the string itself. Addi-
tional parameters are used to notify positioning information since the assignment of scan-
ning and recording camera is often done according to the position of the scanner.

Log barcode data
Action name:LogBarcodeData(Barcode, Hash, Scanner, AreaID, AreaName, Channel,
TimeStamp)
Action category: notification
Logistic barcode data .
Parameter Function
barcode Barcode Barcode.
hash value Hash Hash value of barcode (Optional)
scanner name Scanner Scanner name or IP Address (Optional)
area number AreaID Global number of area for event mapping (Optional)

Parameter Function
area name AreaName Area name (Optional)
channel Channel Global number of a media channel for mapping (Optional)
time stamp TimeStamp Time stamp (Optional)

Log barcode data LPS
Action name:LogBarcodeDataLPS(Barcode, Hash, Scanner, AreaID, AreaName, Channel,
TimeStamp, X, Y, Z, LpsTagID, LpsStatus, LpsCellID, LpsAreaID, UserParam)
Action category: notification
Logistic barcode data including positioning and area information.
Parameter Function
barcode Barcode Barcode.
hash value Hash Hash value of the barcode (Optional)
scanner name Scanner Scanner name or IP Address (Optional)
area number AreaID Global number of area for event mapping (Optional)
area name AreaName Area name. (Optional)
channel Channel Global number of a media channel for mapping (Optional)
time stamp TimeStamp Time stamp (Optional)
X coordinate X X coordinate of the position query (Optional)
Y coordinate Y Y coordinate of the position query (Optional)
Z coordinate Z Z coordinate of the position query (Optional)
LPS tag ID LpsTagID Tag ID of the positioning system (Optional)
LPS status LpsStatus LPS status of the position query(Optional)
LPS cell ID LpsCellID Cell ID of the positioning system (Optional)
LPS area ID LpsAreaID Area ID of the positioning system (Optional)
User param UserParam User param for internal use (Optional)

Log NPR recognition
Action name:LogNPRRecognition(PlateNo, Hash, Country, Channel, TimeStamp, Restric-
tion, Category)
Action category: logical
Log NPR recognition.
Parameter Function
plate no. PlateNo Recognized plate no.
hash value Hash Hash value of the recognized plate no. (Optional)
country Country Country (Optional)
channel Channel Channel (Optional)
time stamp TimeStamp Time stamp (Optional)
restriction Restriction Restriction of recognized number (Optional)
category Category Category of recognized number (Optional)

LPS Actions
LPS (Local Positioning System) actions are used to query and receive position data. The
positioning system is integrated by the GscLPS plugin and is used to locate tagged objects,
e.g. mobile scanners in the logistic environment. The tags have IDs that can be used to
query the position which is then notified as cartesian or geografic coordinates. Some tags
are able to initiate a position request by an external trigger or by a scan event on amobile
scanner.

LPS position data
Action name:LPSPositionData(TagID, ScannerID, X, Y, Z, Latitude, Longitude, AreaID,
CellID, Status, TimeStamp, Data, AreaName)
Action category: logical
LPS position data.
Parameter Function
tag ID TagID Tag ID.
scanner ID ScannerID Scanner ID or IP Address.
X coordinate X X coordinate of cartesian coordinates.
Y coordinate Y Y coordinate of cartesian coordinates.
Z coordinate Z Z coordinate of cartesian coordinates.
Latitude Latitude Latitude of geographic coordinates.
Longitude Longitude Longitude of geographic coordinates.
area ID AreaID Area ID.
cell ID CellID Cell ID.
status Status Status.
time stamp TimeStamp Time stamp.
data Data Data received by the positioning system, eg. barcode.
area name AreaName Area Name.

LPS query position
Action name:LPSQueryPosition(TagID, ScannerID, Data)
Action category: command
Send position query for a Tag to LPS server.
Parameter Function
tag ID TagID Tag ID.
scanner ID ScannerID Scanner ID or IP Address.
data Data Data.

POS
Points of sales (POS) Actions enable the exchange of accompanyingmeta data between
POS Management Systems andGeViScope/re_porter. With these actions payment pro-
cesses can be documented consistently by video. The use of these actions for start and re-
start of event recordings leads to the output of accompanyingmeta data in live video in
GSCView as well as in the storage of those in the video data base. The video sequences
recorded via POS Actions can easily be retrieved in GscView using the accompanyingmeta
data und special data filter dialogs (optional) Besides the actions POSStatus and POSData
for the general integration into POS Management Systems there are also POS actions
which belong to special GeViScope drivers. The actions FillingPumpStatus, Ter-
minalArticleData and TerminalPaymentData are used by the driver "HUTH". The driver
"HUTH" is a GeViScopeMedia Plugin, which was developed by GEUTEBRÜCK, to integ-
rate filling stationmanagement systems of themanufacturer HUTH Elektronik Systeme
GmbH into GeViScope/re_porter. The driver is compatible to HUTH Video Interface
T400/T450/Maxi/mini V1.2. The actions InterfaceRawData and InterfaceRawAnswer are
also used by the driver "HUTH". But they only serve for debugging and fault analysis pur-
pose. They can also be used in general for any link that the concerned action supports -
respectively uses these actions. The action BarcodeData serves as a general integration of
barcode scanners.

Barcode data
Action name:BarcodeData(ReaderName, TimeStamp, Barcode)
Action category: notification
The POS Management System (or any other system like barcode scanner or similar) sends
the action as soon as a barcode was read. Via the parameter "ReaderName" the affected
barcode scanner will be identified. The further parameter will be filled with videometa data
by the POS Management System.

Parameter Function
scanner ReaderName Alphanumerical identification of the barcode scanner
time stamp TimeStamp Time stamp.
code Barcode Alphanumerical field for recording the scanned barcode.

Filling pump status
Action name:FillingPumpStatus(TerminalName, TimeStamp, PumpNo, Status, Amount,
Price, Details) Action category: notification
The "HUTH" driver sends the action for each status change of one filling pump. Via the para-
meter "TerminalName" the concerned device will be identified. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth devices. The driver sends the
alphanumerical value defined in his setup as "Interface name". The further parameter will be
filled with videometa data by the driver.

Parameter Function
Terminal TerminalName Identifies the affected device. The "HUTH" driver is prin-

cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp Time Stamp, when the status change was detected by the
Huth-System

pump no PumpNo Number of the filling pump
status Status New status of the filling pump

Filling started = Huth-device status "taken off before filling"
Filling stopped = Huth-device status "put back on end of
filling"
Pump released = Huth-device status "disconnect after filling"
Amount message = sum - respectively amount notice of the
filling pump

amount Amount Amount of the booking (optional)
price Price Sum of the booking (optional)
details Details Free text (optional)

Interface raw answer
Action name:InterfaceRawAnswer(InterfaceName, TimeStamp, Data)
Action category: notification
This action is used by the "HUTH" driver. ". It serves only as a debug service and can also
be used in general for any integration that supports or uses this action. The "HUTH" driver
sends the action for each telegram it has sent to the end device. The affected end device
will be identified by the parameter "TerminalName". The "HUTH" driver can always build up
numerous connections to different Huth devices. The driver then sends the alphanumerical
value defined in its setup as "Interface name" The further parameter will be filled with video
meta data by the driver.

Parameter Function
interface InterfaceName Identifies the affected end device. The "HUTH" driver is prin-

cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp TimeStamp when the telegram was received from the Huth
system.

answer Data The sent telegram in raw format.

Interface raw data
Action name:InterfaceRawData(InterfaceName, TimeStamp, Data)
Action category: notification
This action is used by the driver "HUTH". It serves only as a debug service and can also be
used in general for any integration that supports or uses this action. The "HUTH" driver
sends the action for each telegram it has received from the end device. The affected end
device will be identified by the parameter "TerminalName". The "HUTH" driver can always
build up numerous connections to different Huth devices. The driver then sends the alpha-
numerical value defined in its setup as "Interface name" The further parameter will be filled
with videometa data by the driver.

Parameter Function
interface InterfaceName Identifies the affected end device. The "HUTH" driver is prin-

cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp TimeStamp when the telegram was received from the Huth
system.

data Data The received telegram in raw format.

POS data
Action name:POSData(POSName, TimeStamp, Article, Price, Units, PricePerUnit, Line1,
Line2, Line3, Line4, Line5)
Action category: logical
The POS Management System sends the action for each transaction carried out at a cash
point
Via the parameter "POS"the affected cash point will be identified. The further parameter will
be filled with videometa data by the POS Management System

Parameter Function
POS POSName Alphanumerical identification of the cash point
time stamp TimeStamp Time Stamp, when the action was send from the POS man-

agement system
article Article Identification of the booked article (optional)
price Price Amount (single price multiplied with number of articles) of

transaction (optional)
units Units Amount of articles of the transaction (optional)
price per unit PricePerUnit Single article price of the transaction (optional)
line 1 Line1 Alphanumerical fields /sections for storing of additional

information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

line 2 Line2 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-

Parameter Function
ation which have been printed out on the sales slip (optional)

line 3 Line3 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

line 4 Line4 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

line 5 Line5 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

POS status
Action name:POSStatus(POSName, TimeStamp, Status, Details)
Action category: logical
The POS management system sends the action as soon as the cash point is opened or
closed or as soon as a cancellation will bemade at a cash point.
Via the parameter "POS" the concerned cash point will be identified. The further parameter
will be filled with videometa data from the POS management system.
The parameter "Status" can be addressed by the POS management system with a code fig-
ure for the currently notified status.

Parameter Function
POS POSName Alphanumerical identification of cash point
time stamp TimeStamp Time Stamp, when the action was sent from the POS man-

agement system
status Status Identification figure for the currently notified status
details Details Additional alphanumerical information from POS management

system (optional)

Terminal article data
Action name:TerminalArticleData(TerminalName, TimeStamp, CashierStation, PumpNo,
AlarmStatus, Amount, Price, Details)
Action category: notification
The "Huth" driver sends the actions for each product-group-booking. Via the parameter "Ter-
minalName" the affected device will be identified. The "HUTH" driver is principally able to
build up several connections to different Huth devices . The driver sends the alphanumerical
value defined in his setup as "Interface name". The further parameter will be filled with video
meta data via the driver.

Parameter Function
Terminal TerminalName Identifies the affected device. The "HUTH" driver is prin-

cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp Time Stamp, when the status change was detected by the
Huth-System

cashier station CashierStation Number of the cash point where the booking is carried out
pump no PumpNo Number of the filling point
alarm AlarmStatus Status of Alarm-Flags

Yes = Alarm-Flag was set by the Huth system
No = Alarm-Flag not set

Parameter Function
amount Amount Amount of the booking (optional)
price Price Sum of the booking (optional)
details Details Free text (optional)

Terminal payment data
Action name:TerminalPaymentData(TerminalName, TimeStamp, CashierStation,
PumpNo, AlarmStatus, Amount, Price, Details)
Action category: notification
The "HUTH" driver sends the action for each termination of a booking with the usedmethod
of payment. Via the parameter "TerminalName" the affected device will be identified. The
"HUTH" driver is principally able to build up several connections to different Huth devices.
The driver sends the alphanumerical value defined in his setup as "Interface name". The fur-
ther parameter will be filled with videometa data via the driver.

Parameter Function
Terminal TerminalName Identifies the affected device. The "HUTH" driver is prin-

cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp Time Stamp, when the status change was detected by the
Huth-System

cashier station CashierStation Number of the cash point where the booking is carried out
with the used payment method

pump no PumpNo Number of the filling point (optional)
alarm AlarmStatus Status of Alarm-Flags

Yes = Alarm-Flag was set by the Huth system
No = Alarm-Flag not set

amount Amount Amount of the booking (optional)
price Price Sum of the booking (optional)
details Details Free text (optional)

Remote export
The actions of the category "Remote Export" subserve to start and control exports over the
network. The actions are only at disposal if GSCRemEx service runs on every device and a
connection to a central GeViSoft server persists. TheGSCServer andGSCRemEx service
have to run together on a local machine otherwise exports are not possible. The
GSCRemEx service has to be setup in advance by GSCRemExEditor. The exports can be
executed by a PILOT center device or other software systems (SDK based,
GEUTEBRUECK devices). The PILOT is a systemmanagement console of
GEUTEBRUECK which simplifies the handling of complex security systems. The PILOT
among others can be used to control GSCView. Especially in view of the fact of exports the
user can define start and end points by the help of the PILOT throughGSCRemEx ("SetEx-
portMarker" action). GSCView remembers the points in time and inserts them to the action
"StartRemoteExport". The action "StartRemoteExport" is initiated by GSCView after the
PILOT has send the action "InitializeRemoteExport" by indirection via the GeViSoft server
andGeViScope server to GSCView. GSCView sends the action "StartRemoteExport" to

the GSCRemEx service and triggers the appropriate export. Exports that have been started
throughGSCRemEx service can be started or aborted from other devices or software sys-
tems over the network. Exports that have been started locally in GSCView cannot be con-
trolled from other devices or software systems. In the curse of an export process no new
export can be started. This export has to be restarted after the running export process has
been completed! The actions "SetExportMarker" and "InitializeRemoteExport" have been
developed especially for the PILOT.

Cancel export
Action name:CancelExport(ExportID, AbortFlag)
Action category: command
Through this action the running export process with the specified export ID is being aborted
if GSCView remote-controls the GSCRemEx service. If the GSCRemEx service is remote-
controlled by an external application the external application has to send the action to abort
the running export process.
Parameter Function
export GUID ExportID ID of the export process that has to be aborted.

The export GUID is being assigned on the action "StartRe-
moteExport".
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

abort flag AbortFlag reason for abort
0: user abort; abort of export through user
1: low disc space; too little storage capacity
2: no user rights; access based on restricted user rights not pos-
sible
3: error; internal error

Export finished
Action name:ExportFinished(ExportID, Success)
Action category: notification
TheGSCRemEx service notifies through this action that the running process was com-
pleted.
Possible status messages are: user abort, low disc space, no user rights, error.
Parameter Function
export GUID ExportID ID of completed export process. The export GUID is being assigned

on the action "StartRemoteExport".
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

success Success reason for abort
0: user abort; abort of export through user
1: low disc space; too little storage capacity
2: no user rights; access based on restricted user rights not pos-
sible
3: error; internal error

Export progress
Action name:ExportProgress(ExportID, Progress)
Action category: notification
TheGSCRemEx service notifies the current status of the running export process in%.
Parameter Function
export GUID ExportID ID of running export. The export GUID is being assigned on the

action "StartRemoteExport".
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

progress Progress shows current status of the export process in %

Initialize remote export
Action name:InitializeRemoteExport(Viewer, Device)
Action category: command
This action is being used especially in the context of control units or systems like for
example the PILOT.
The PILOT center device notifies GSCView that a new export has to be initiated. Thereupon
GSCView creates the action "StartRemoteExport" with the appropriate parameters.
Parameter Function
viewer Viewer global viewer number
device GUID Device ID of the PILOT center device (transmitted by the PILOT itself)

e.g.: 01E68451-2406-484d-A9BC-5140762931E0

Set export marker
Action name:SetExportMarker(Viewer, Marker)
Action category: command
This action is being used especially in the context of control units or systems like for
example the PILOT.
It indicates GSCView that an export start and end point has to be set on the current position
of viewer X.
The so-calledmarkers are being transferred automatically into the "StartRemoteExport"
action once the "InitializeRemoteExport" action has been sent from the PILOT. The action
"StartRemoteExport" transfers the start and end points to the GSCRemEx service which
conducts the appropriate export.
Parameter Function
viewer Viewer global viewer number
marker Marker tags and stores the start and end point of the data that has to be

exported
(selection begin=0, selection end=1)

Start remote export
Action name:StartRemoteExport(ExportID, Device, BackupFormat, Channel, Selec-
tionBegin, SelectionEnd, JobID)
Action category: command
This action tells the GSCRemEx service to start a new export.
The action "StartRemoteExport" was created because the PILOT or another external soft-
ware system did send the action "InitializeRemoteExport" to GSCView before.
Parameter Function
export GUID ExportID ID of running exports. The export GUID has to be determined sep-

arately in advance because the action itself does not create a
GUID.

device GUID Device ID of PILOT center device. If no PILOT is being used the blank
GUID can be used instead.
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

format BackupFormat defines the format of the exported file
0=default (in this case it equals 1=GBF)
1=GBF(GEUTEBRUECK backup file)
2=MPEG2

channel Channel global channel number/camera number
start time SelectionBegin holds the position of the marker for the start point ("selection

begin")
end time SelectionEnd holds the position of the marker for the end point ("selection end")

Parameter Function
job ID JobID Contains the login data (server name, user name, encoded pass-

word)
Optional second user password. The login data is separated by |.
e.g.: <server name>|<user>|<PW>|<user2>|<PW2>
localhost|admin|test|
If there is no second user (second user password) nothing has to
be
entered at this point.
Passwords in this parameter are encoded. Therefor the function
DBIEncodeString() of GscDBI-DLL (from GeViScope/re_porter
SDK) is being used.

Start scene store
Action name:StartSceneStore(SceneStoreID, CutList, PreHistoryLength, Record-
ingLength)
Action category: command
For internal use only!
Parameter Function
scene store
GUID

SceneStoreID Scene store GUID.

cut-list CutList Cut-list.
pre-history
length

PreHistoryLength Pre-history length.

recording
length

RecordingLength Recording length.

SKIDATA
SKIDATA messages.

SKIDATA control
Action name:SkidataControl(InterfaceName, Data)
Action category: logical
SKIDATA control information.
Parameter Function
interface InterfaceName Interface name.
state Data Interface state.

SKIDATA device event
Action name:SkidataDeviceEvent(InterfaceName, DeviceID, EventCode)
Action category: logical

SKIDATA device event.
Parameter Function
interface InterfaceName Interface name.
device DeviceID Device ID.
event code EventCode Event code.

SKIDATA entry
Action name:SkidataEntry(InterfaceName, MessageCode, TranscactionID, CarParkNo,
DeviceID)

Action category: logical
SKIDATA entry.
Parameter Function
interface InterfaceName Interface name.
message MessageCode Message code.
transaction TranscactionID Transcaction ID.
car park CarParkNo Car park no.
device DeviceID Device ID.

SKIDATA exit
Action name:SkidataExit(InterfaceName, MessageCode, TranscactionID, CarParkNo,
DeviceID)
Action category: logical
SKIDATA exit.
Parameter Function
interface InterfaceName Interface name.
message MessageCode Message code.
transaction TranscactionID Transcaction ID.
car park CarParkNo Car park no.
device DeviceID Device ID.

SKIDATA transaction
Action name:SkidataTransaction(InterfaceName, MessageCode, TranscactionID,
CarParkNo, DeviceID)
Action category: logical
SKIDATA transaction.
Parameter Function
interface InterfaceName Interface name.
message MessageCode Message code.
transaction TranscactionID Transcaction ID.
car park CarParkNo Car park no.
device DeviceID Device ID.

System actions
All actions describing system behaviour.

Custom action
Action name:CustomAction(Int, String)
Action category: logical
This action has no side effects and can be used for customer purposes.
Parameter Function
INT parameter Int Numeric parameter.
STRING parameter String Literal parameter.

Database recording info per ring
Action name:DatabaseRecordingInfoRing(DatabaseRing, NoVideoRecording, NoAu-
dioRecording, NoRecordingAtAll, VideoSamplesPerSecond, VideoMBPerSecond, Audi-
oSamplesPerSecond, AudioMBPerSecond, WriteWaitTimesPercent, RingCapacity,
OldestItem, RecordingDepth, EstimatedRequiredCapacity)

Action category: logical
Database recording info per ring.
Parameter Function
database ring DatabaseRing Database ring.
no video recording NoVideoRecording Video is recording or not.
no audio recording NoAudioRecording Audio is recording or not.
no recording NoRecordingAtAll Video and/or audio is recording or not.

video samples/s VideoSamplesPerSecond Video samples per second.
video samples MB/s VideoMBPerSecond Video MB per second.
audio samples/s AudioSamplesPerSecond Audio samples per second.
audio samples MB/s AudioMBPerSecond Audio MB per second.
write wait % WriteWaitTimesPercent Write wait times in percent.
ring capacity RingCapacity Ring capacity.
oldest item OldestItem Time stamp of the oldest item.
recording depth RecordingDepth Recording depth in hours.
estimated required capacity EstimatedRequiredCapacity Estimated required capacity.

Database recording info total
Action name:DatabaseRecordingInfoTotal(NoVideoRecording, NoAudioRecording, NoRe-
cordingAtAll, VideoSamplesPerSecond, VideoMBPerSecond, AudioSamplesPerSecond,
AudioMBPerSecond, WriteWaitTimesPercent, TotalCapacity, FreeCapacity, Alloc-
atedCapacity, OldestItem, RecordingDepth, EstimatedRequiredCapacity, RequiredCa-
pacityFactor, RequiredCapacityAvailable)
Action category: logical
Database recording info total.
Parameter Function
no video recording NoVideoRecording Video is recording or not.
no audio recording NoAudioRecording Audio is recording or not.
no recording NoRecordingAtAll Video and/or audio is recording or not.

video samples/s VideoSamplesPerSecond Video samples per second.
video samples MB/s VideoMBPerSecond Video MB per second.
audio samples/s AudioSamplesPerSecond Audio samples per second.
audio samples MB/s AudioMBPerSecond Audio MB per second.
write wait % WriteWaitTimesPercent Write wait times in percent.
total capacity TotalCapacity Total capacity.
free capacity FreeCapacity Free capacity.
allocated capacity AllocatedCapacity Allocated capacity.
oldest item OldestItem Time stamp of the oldest item.
recording depth RecordingDepth Recording depth in hours.
estimated required capacity EstimatedRequiredCapacity Estimated required capacity.

required capacity factor RequiredCapacityFactor Required capacity factor.
required capacity available RequiredCapacityAvailable Required capacity available.

Database started
Action name:DatabaseStarted(Status, TotalSize)
Action category: logical

This action will be fired at the database start-up.
Parameter Function
status Status Database status message.
total size TotalSize Database total size.

Event recording changed
Action name:EventRecordingChanged(EventID, TypeID)
Action category: logical
Event recording settings are changed.
Parameter Function
instance ID EventID Instance ID of the event.
event type TypeID Type of the event.

Event started
Action name:EventStarted(EventID, TypeID, ForeignKey)
Action category: logical
Event has started.
Parameter Function
instance ID EventID Instance ID of the event.
event type TypeID Type of the event.
foreign key ForeignKey Optional foreign key used to start the alarm.

Event stopped
Action name:EventStopped(EventID, TypeID)
Action category: logical
Event has stopped.
Parameter Function
instance ID EventID Instance ID of the event.
event type TypeID Type of the event.

FRC notification
Action name:FRCNotification(Notification, Param, Description, XMLInfo)
Action category: logical
FRC notification.
Parameter Function
notification Notification Notification reason.
param Param Additional parameter.
description Description Optional notification text.
additional info XMLInfo Optional additional info (usually as XML string).

GEMOS alarm
Action name:GEMOSalarm(GEMOSkey, GEMOSint, GEMOSstr)
Action category: logical
GEMOS alarm notification.
Parameter Function
GEMOS key GEMOSkey GEMOS alarm key.
GEMOS int GEMOSint GEMOS alarm integer parameter.
GEMOS str GEMOSstr GEMOS alarm string parameter.

Kill all events
Action name:KillAllEvents()
Action category: logical
Kill all active events.

Kill event
Action name:KillEvent(TypeID)
Action category: logical
Kill event.
Parameter Function
event type TypeID Type of the event.

Kill event by instance
Action name:KillEventByID(EventID)
Action category: logical
Kill event by instance ID.
Parameter Function
instance ID EventID Instance ID of the event.

Live check
Action name:LiveCheck(Counter, Date)
Action category: logical
This action will be fired every 10 seconds and intended for use as live check.
Parameter Function
counter Counter This is the number of already fired live check actions.
time stamp Date Current server time.

Set clock
Action name:SetClock(Date)
Action category: logical

Set clock.
Parameter Function
current time Date Current time.

Setup changed
Action name:SetupChanged(User, Host, Date, ResourceKind, ResourceID, ChangeKind,
Details, ClientHost, ClientType, ClientAccount)
Action category: logical
Setup changed.
Parameter Function
user name User Name of the user modified the setup.
remote host Host Host from where the connection was done.
current time Date Current time.
resource kind ResourceKind Modified resource kind.
resource ID ResourceID Modified resource ID.
change kind ChangeKind Change kind.
details Details Details of the modification.
client host ClientHost Host from where the connection is done.

Parameter Function
client type ClientType Client type.
client account ClientAccount User account from where the connection is done.

Setup upload progress
Action name:SetupUploadProgress(User1, User2, Host, Progress, Date)
Action category: logical
Setup upload progress.
Parameter Function
first user User1 Name of the user modified the setup.
second user User2 Name of the second user by four eyes authentication.
remote host Host Host from where the connection was done.
progress % Progress Progress in percent.
current time Date Current stage time.

Set watchdog
Action name:SetWatchdog(Timeout)
Action category: logical
Set watchdog.
Parameter Function
timeout Timeout Timeout in seconds, before the watchdog must be retriggered and before the

hardware watchdog will set the hardware contact.

SMRP viewer cleared
Action name:SMRPViewerCleared()
Action category: logical
SMRP viewer cleared.

SMRP viewer connected
Action name:SMRPViewerConnected(Server, Channel)
Action category: logical
SMRP viewer connected to the camera.
Parameter Function
server Server Server name.
channel Channel Channel.

SMTP mail
Action name:SMTPMailSend(Subject, To, Cc, Body, Channel)
Action category: logical
This action will send a user defined email if GscMail is connected
Parameter Function
subject Subject Mail subject.
to To Mail recepients.
cc Cc Carbon copy recepients.
body Body Mail body.
channel Channel Channel.

Start event
Action name:StartEvent(TypeID, ForeignKey)
Action category: logical

Start event.
Parameter Function
event type TypeID Type of the event.
foreign key ForeignKey Optional foreign key used to store for the alarm.

Stop all events
Action name:StopAllEvents()
Action category: logical
Stop all active events.

Stop event
Action name:StopEvent(TypeID)
Action category: logical
Stop event.
Parameter Function
event type TypeID Type of the event.

Stop event by instance
Action name:StopEventByID(EventID)
Action category: logical
Stop event by instance ID.
Parameter Function
instance ID EventID Instance ID of the event.

System error
Action name:SystemError(Source, Message, WindowsError, Description, XMLInfo)
Action category: logical
Notify system error.
Parameter Function
source subsystem Source Source of the message.
message code Message Kind of the message.
Windows error code WindowsError Optional Windows error code.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

System info
Action name:SystemInfo(Source, Message, Description, XMLInfo)
Action category: logical
Notify system information.
Parameter Function
source subsystem Source Source of the message.
message code Message Kind of the message.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

System settings changed
Action name:SystemSettingsChanged(SetupChanged, User1, User2, Host,
TimeRangeChanged, TimeRange, LicenceChanged, Date)
Action category: logical
Setup of the system and/or the current time range changed.

Parameter Function
setup changed SetupChanged System setup has changed.
first user User1 Name of the user modified the setup.
second user User2 Name of the second user by four eyes authentication.
remote host Host Host from where the connection was done.
time range changed TimeRangeChanged Time range has changed.
current time range TimeRange Currently active time range.
licence changed LicenceChanged Licence has changed.
change time Date Time of the system settings changed.

System started
Action name:SystemStarted(Date)
Action category: logical
This action will be fired only once at the system start-up.
Parameter Function
start time Date Time of the system start-up.

System terminating
Action name:SystemTerminating(Date, WindowsShutdown)
Action category: logical
This action will be fired when the system is going shutdown.
Parameter Function
stop time Date Time of the system shutdown.
Windows shut-
down

WindowsShutdown Indicates whether the system shutdown is done due to the
windows shutdown.

System warning
Action name:SystemWarning(Source, Message, WindowsError, Description, XMLInfo)
Action category: logical
Notify system warning.
Parameter Function
source subsystem Source Source of the message.
message code Message Kind of the message.
Windows error code WindowsError Optional Windows error code.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

Transfer binary buffer
Action name:TransferBinaryBuffer(InternalHandle, Parameter)
Action category: logical
Transfer binary buffer.
Parameter Function
internal handle InternalHandle Internal handle.
parameter Parameter Parameter.

Transfer binary channel buffer
Action name:TransferBinaryChannelBuffer(Channel, InternalHandle, Parameter)
Action category: logical
Transfer binary channel buffer.

Parameter Function
channel Channel Channel.
internal handle InternalHandle Internal handle.
parameter Parameter Parameter.

User login
Action name:UserLogin(User1, User2, Host, ClientHost, ClientType, ClientAccount)
Action category: logical
This action will be fired when the user has connected to the system.
Parameter Function
first user User1 Name of the user connected to the system.
second user User2 Name of the second user by four eyes authentication.
remote host Host Host from where the connection is done.
client host ClientHost Host from where the connection is done.
client type ClientType Client type.
client account ClientAccount User account from where the connection is done.

User login failed
Action name:UserLoginFailed(User1, User2, Host, RejectReason, ClientHost, ClientType,
ClientAccount)
Action category: logical
This action will be fired when the user has tried to connect to the system but was rejected.
Parameter Function
first user User1 Name of the user tried to connect to the system.
second user User2 Name of the second user by four eyes authentication.
remote host Host Host from where the connection is done.
reject reason RejectReason Reason of the rejection.
client host ClientHost Host from where the connection is done.
client type ClientType Client type.
client account ClientAccount User account from where the connection is done.

User logout
Action name:UserLogout(User1, User2, Host, ClientHost, ClientType, ClientAccount)
Action category: logical
This action will be fired when the user has disconnected from the system.
Parameter Function
first user User1 Name of the user disconnected from the system.
second user User2 Name of the second user by four eyes authentication.
remote host Host Host from where the connection was done.
client host ClientHost Host from where the connection is done.
client type ClientType Client type.
client account ClientAccount User account from where the connection is done.

Video control actions
All actions to control the video streams, also all notifications about the state change of the
video streams.

Activate external process
Action name:ActivateExternalProcess(Channel, TimeStamp, ExternalSystem)
Action category: logical
Activate external process.
Parameter Function
channel Channel Channel.
time stamp TimeStamp Time stamp.
external system ExternalSystem External system to activate.

Change AD parameter set
Action name:ChangeADParameterSet(Channel, ParameterSet)
Action category: logical
This action changes the current AD parameter set of the video channel.
Parameter Function
channel Channel Channel.
AD parameter set ParameterSet The name of the new AD parameter set.

Change camera profile
Action name:ChangeCameraProfile(HardwareModule, CameraProfile)
Action category: logical
This action changes the current camera profile of the hardwaremodule.
Parameter Function
hardware HardwareModule Hardware module.
profile CameraProfile The name of the camera profile.

Change CPA parameter set
Action name:ChangeCPAParameterSet(Channel, ParameterSet)
Action category: logical
This action changes the current CPA parameter set of the video channel.
Parameter Function
channel Channel Channel.
CPA parameter set ParameterSet The name of the new CPA parameter set.

Change OBTRACK parameter set
Action name:ChangeObtrackParameterSet(Channel, ParameterSet)
Action category: logical
This action changes the current OBTRACK parameter set of the video channel.
Parameter Function
channel Channel Channel.
OBTRACK parameter set ParameterSet The name of the new OBTRACK parameter set.

Change VMD parameter set
Action name:ChangeVMDParameterSet(Channel, ParameterSet)
Action category: logical
This action changes the current VMD parameter set of the video channel.
Parameter Function
channel Channel Channel.
VMD parameter set ParameterSet The name of the new VMD parameter set.

Channel error
Action name:ChannelError(Channel, SensorType, Source, Message, WindowsError,
Description, XMLInfo)
Action category: logical
Notify channel error.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
source subsystem Source Source of the message.
message code Message Kind of the message.
Windows error code WindowsError Optional Windows error code.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

Channel info
Action name:ChannelInfo(Channel, SensorType, Source, Message, Description, XMLInfo)
Action category: logical
Notify channel information.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
source subsystem Source Source of the message.
message code Message Kind of the message.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

Channel live check
Action name:ChannelLiveCheck(Channel, SensorType, TimeStamp)
Action category: logical
This action notifies that the channbel is alive.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
time stamp TimeStamp Time stamp.

Channel warning
Action name:ChannelWarning(Channel, SensorType, Source, Message, WindowsError,
Description, XMLInfo)
Action category: logical
Notify channel warning.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
source subsystem Source Source of the message.
message code Message Kind of the message.
Windows error code WindowsError Optional Windows error code.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

CPA measurement
Action name:CPAMeasurement(Channel, Correlation)
Action category: logical
CPA measurement.
Parameter Function
channel Channel Channel.
correlation Correlation Correlation factor.

IAS settings changed
Action name:IASSettingsChanged(Channel, SensorType)
Action category: logical
IAS settings changed.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.

IP camera raw command
Action name:IPCameraRawCommand(URL, User, Password, POST)
Action category: logical

This action sends a special command to the IP camera.
Parameter Function
url URL Complete command URL (like http://192.168.0.165:80/-

set?daynight=night).
user User User name to authenticate by the camera (optional).
password Password Password to authenticate by the camera (optional).
post POST POST parameters (optional, separate lines with \\r\\n).

Make CPA reference image
Action name:MakeCPAReferenceImage(Channel)
Action category: logical
Make CPA reference image.
Parameter Function
channel Channel Channel.

Media channel setup
Action name:MediaChannelSetupInfo(Channel, TimeStamp, Parameter)
Action category: logical
Media channel setup info.
Parameter Function
channel Channel Channel.
time stamp TimeStamp Time stamp.
parameter Parameter Parameter.

NPR raw data
Action name:NPRRawData(PlateNo, Country, Channel, TimeStamp, ZoneRect, Weight,
ZoneState, ZonePlace, Speed, Direction, ZoneIndex, CurBest, PlateWidth, PlateHeight,
PlateAngle, SymHeight, Type)
Action category: logical
NPR raw data.

Parameter Function
plate no. PlateNo Recognized plate no.
country Country Country.
channel Channel Channel.
time stamp TimeStamp Time stamp.
zone rect ZoneRect Zone rectangle.
weight Weight Weight of recognition.
zone state ZoneState Zone state.
zone status ZonePlace Zone status.
speed Speed Speed in km/h
direction Direction Direction of the motion.
zone index ZoneIndex Zone index.
best CurBest Current recognition is best.
plate width PlateWidth Plate width.
plate height PlateHeight Plate height.
plate angle PlateAngle Plate angle.
Symbol height SymHeight Symbol height.
type Type Number type.

NPR recognition
Action name:NPRRecognition(PlateNo, Country, Channel, TimeStamp, ZoneRect, Restric-
tion, Category, Speed, Direction, ZoneIndex, Type, Weight)
Action category: logical
NPR recognition.
Parameter Function
plate no. PlateNo Recognized plate no.
country Country Country.
channel Channel Channel.
time stamp TimeStamp Time stamp.
zone rect ZoneRect Zone rectangle.
restriction Restriction Restriction of recognized number.
category Category Category of recognized number.
speed Speed Speed in km/h
direction Direction Direction of the motion.
zone index ZoneIndex Zone index.
type Type Number type.
weight Weight Weight of recognition.

OBTRACK channel counter
Action name:ObtrackChannelCounter(Channel, CounterType, CounterValue, ObjectDir-
ection, TimeStamp, ResetTimeStamp)
Action category: logical
OBTRACK channel counter.
Parameter Function
channel Channel Channel.
counter type CounterType Counter type.
counter value CounterValue Counter value.
object direction ObjectDirection Object direction.

Parameter Function
time stamp TimeStamp Time stamp.
reset time stamp ResetTimeStamp Reset time stamp.

OBTRACK channel counter threshold
Action name:ObtrackChannelCounterThreshold(Channel, CounterType, CounterValue,
ExceedingDirection, TimeStamp)
Action category: logical
OBTRACK channel counter threshold.
Parameter Function
channel Channel Channel.
counter type CounterType Counter type.
counter value CounterValue Counter value.
exceeding direction ExceedingDirection Exceeding direction.
time stamp TimeStamp Time stamp.

OBTRACK channel set counter
Action name:ObtrackChannelSetCounter(Channel, CounterType, CounterValue,
TimeStamp)
Action category: logical
OBTRACK channel set counter.
Parameter Function
channel Channel Channel.
counter type CounterType Counter type.
counter value CounterValue Counter value.
time stamp TimeStamp Time stamp.

OBTRACK frame raw data
Action name:ObtrackFrameRawData(TimeStamp, Channel, Brightness, Contrast)
Action category: logical
OBTRACK frame raw data.
Parameter Function
time stamp TimeStamp Time stamp.
channel Channel Channel.
brightness Brightness Brightness.
contrast Contrast Contrast.

OBTRACK group counter
Action name:ObtrackGroupCounter(GroupId, CounterType, CounterValue, ObjectDirection,
TimeStamp, ResetTimeStamp, GroupName)
Action category: logical
OBTRACK group counter.
Parameter Function
group id GroupId Group ID.
counter type CounterType Counter type.
counter value CounterValue Counter value.
object direction ObjectDirection Object direction.
time stamp TimeStamp Time stamp.
reset time stamp ResetTimeStamp Reset time stamp.
group name GroupName Group name.

OBTRACK group counter threshold
Action name:ObtrackGroupCounterThreshold(GroupId, CounterType, CounterValue,
ExceedingDirection, TimeStamp, GroupName)
Action category: logical
OBTRACK group counter threshold.
Parameter Function
group id GroupId Group ID.
counter type CounterType Counter type.
counter value CounterValue Counter Value.
exceeding direction ExceedingDirection Exceeding direction.
time stamp TimeStamp Time stamp.
group name GroupName Group name.

OBTRACK group set counter
Action name:ObtrackGroupSetCounter(GroupId, CounterType, CounterValue, TimeStamp,
GroupName)
Action category: logical
OBTRACK group set counter.
Parameter Function
group id GroupId Group ID.
counter type CounterType Counter type.
counter value CounterValue Counter value.
time stamp TimeStamp Time stamp.
group name GroupName Group name.

OBTRACK object raw data
Action name:ObtrackObjectRawData(TimeStamp, Channel, Area, ObjectID, ObjectStatus,
ObjectClass, Confidence, Position, Speed, Duration, Direction, Size, ObjectWidth,
ObjectHeight, ProcessSize, GscNetName)
Action category: logical
OBTRACK object raw data.
Parameter Function
time stamp TimeStamp Time stamp.
channel Channel Channel.
area no Area Area no.
object ID ObjectID Object ID.
object status ObjectStatus Object status.
object class ObjectClass Object class.
confidence Confidence Confidence.
position Position Position.
speed Speed Speed.
duration Duration Duration.
direction Direction Direction.
object size Size Object size.
object width ObjectWidth Object width in meters.
object height ObjectHeight Object height in meters.
process size ProcessSize Process size.
GSC net name GscNetName GeviScope network name.

OBTRACK tunnel alarm
Action name:ObtrackTunnelAlarm(Channel, TimeStamp, AlarmReason, ObjectID,
AlarmAreaID, ObjectArea)
Action category: logical
OBTRACK tunnel alarm notification.
Parameter Function
channel Channel Channel.
time stamp TimeStamp Time stamp.
alarm reason AlarmReason Alarm reason.
object ID ObjectID Object ID.
alarm area ID AlarmAreaID Alarm area ID.
object area ObjectArea Object area.

Sensor alarm finished
Action name:SensorAlarmFinished(Channel, SensorType)
Action category: logical
This action will be fired when the alarm is finished.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.

Sensor inhibit alarm finished
Action name:SensorInhibitAlarmFinished(Channel, SensorType)
Action category: logical
This action will be fired when the inhibit alarm finished.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.

Sensor inhibit video alarm
Action name:SensorInhibitVideoAlarm(Channel, SensorType, ADArea, ADCell,
VMDGroup, VMDZone, VMDCycle, AlarmArea, ObjectClass)
Action category: logical
This action will be fired when themotion in inhibit area detected.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
AD alarm area ADArea AD alarm area.
AD cell ADCell AD cell nr.
VMD alarm group VMDGroup VMD alarm group.
VMD zone VMDZone VMD zone nr.
VMD cycle VMDCycle VMD measure cycle.
alarm area AlarmArea Alarm area.
object class ObjectClass OBTRACK object class.

Sensor video alarm
Action name:SensorVideoAlarm(Channel, SensorType, ADArea, ADCell, VMDGroup,
VMDZone, VMDCycle, AlarmArea, ObjectClass)
Action category: logical

This action will be fired when video alarm is detected.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
AD alarm area ADArea AD alarm area.
AD cell ADCell AD cell nr.
VMD alarm group VMDGroup VMD alarm group.
VMD zone VMDZone VMD zone nr.
VMD cycle VMDCycle VMD measure cycle.
alarm area AlarmArea Alarm area.
object class ObjectClass OBTRACK object class.

Set system time
Action name:SetSystemTime(TimeStamp)
Action category: logical
Set system time.
Parameter Function
time stamp TimeStamp Time stamp.

Set test picture mode
Action name:SetTestPictureMode(Channel, Mode)
Action category: logical
Enable or disable test picture generator.
Parameter Function
channel Channel Channel.
enable Mode Enable or disable test picture generator.

Video contrast detected
Action name:VideoContrastDetected(Channel)
Action category: logical
This action will be fired when the contrast is detected in the video signal.
Parameter Function
channel Channel Channel.

Video contrast failed
Action name:VideoContrastFailed(Channel)
Action category: logical
This action will be fired when the contrast is lost in the video signal.
Parameter Function
Parameter Function
channel Channel Channel.

Video set image brightness
Action name:VideoSetImageBrightness(Channel, SensorType, Brightness)
Action category: logical
Video set image brightness.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
brightness Brightness Brightness.

Video set image contrast
Action name:VideoSetImageContrast(Channel, SensorType, Contrast)
Action category: logical
Video set image contrast.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
contrast Contrast Contrast.

Video set image saturation
Action name:VideoSetImageSaturation(Channel, SensorType, Saturation)
Action category: logical
Video set image saturation.
Parameter Function
channel Channel Channel.
sensor type SensorType Sensor type.
saturation Saturation Saturation.

Video source has changed
Action name:VideoSourceChanged(Channel, SignalNorm, SignalType, InterlaceType)
Action category: logical
This action indicates the changes on the video input source.
Parameter Function
channel Channel Channel.
signal norm SignalNorm New signal norm.
signal type SignalType New signal type.
interlace type InterlaceType New interlace type.

Video sync detected
Action name:VideoSyncDetected(Channel)
Action category: logical
This action will be fired when the sync is detected in the video signal.
Parameter Function
channel Channel Channel.

Video sync failed
Action name:VideoSyncFailed(Channel)
Action category: logical
This action will be fired when the sync is lost in the video signal.
Parameter Function
channel Channel Channel.

Viewer actions
Viewer actions allow remote controlling GSCView. To enable remote controlling GSCView
the "Remote control" setting in GscProfileManager and a global unique viewer client number
has to be configured.

VC alarm queue confirm
Action name:VCAlarmQueueConfirm(Viewer, SelectionMode)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

A current alarm is confirmed. The parameter "selectionmode" defines which alarm in the
queue will be confirmed.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
selection
mode

SelectionMode first = first active alarm in queue
next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue confirm by instance
Action name:VCAlarmQueueConfirmByInstance(Viewer, AlarmID)
Action category: command
The alarm queue of GSCView with the given viewer client number can be remote controlled.

A current alarm is confirmed. It is identified by its alarm instance ID (event instance ID). A
unique instance ID is assigned to each alarm /recording event at creation time by the GeViS-
cope server.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
instance
ID

AlarmID The alarm instance ID (event instance ID)

VC alarm queue confirm by type
Action name:VCAlarmQueueConfirmByType(Viewer, TypeID, SelectionMode)
Action category: command
The alarm queue of GSCView with the given viewer client number can be remote controlled.

A current alarm is confirmed. It is identified by its alarm type (event type) whichmeans the
name of the alarm (event) in the GeViScope Setup event list and also by the parameter
"selectionmode". The parameter "selectionmode" defines which alarm in the queue will be
selected.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
event type TypeID The alarm type (event type)
selection
mode

SelectionMode first = first active alarm in queue
next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue remove
Action name:VCAlarmQueueRemove(Viewer, SelectionMode)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

An alarm is removed from the queue. The parameter "selectionmode" defines which alarm
in the queue will be removed.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
selection
mode

SelectionMode first = first active alarm in queue
next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue remove by instance
Action name:VCAlarmQueueRemoveByInstance(Viewer, AlarmID)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

An alarm is removed from the queue. It is identified by its alarm instance ID (event instance
ID). A unique instance ID is assigned to each alarm/event recording.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
instance
ID

AlarmID The alarm instance ID (event instance ID)

VC alarm queue remove by type
Action name:VCAlarmQueueRemoveByType(Viewer, TypeID, SelectionMode)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

An alarm is removed from the queue. It is identified by its alarm type (event type) which
means the name of the alarm (event) in the GeViScope Setup event list. The parameter
"selectionmode" defines which alarm will be removed.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
event type TypeID The alarm type (event type)
selection
mode

SelectionMode first = first active alarm in queue
next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue select
Action name:VCAlarmQueueSelect(Viewer, SelectionMode)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

An alarm of the queue is presented. The parameter "selectionmode" defines which alarm in
the queue will be presented.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
selection
mode

SelectionMode first = first active alarm in queue
next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue select by instance
Action name:VCAlarmQueueSelectByInstance(Viewer, AlarmID)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

An alarm of the queue is presented. It is identified by its alarm instance ID (event instance
ID). A unique instance ID is assigned to each alarm/event recording.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
instance
ID

AlarmID The alarm instance ID (event instance ID)

VC alarm queue select by type
Action name:VCAlarmQueueSelectByType(Viewer, TypeID, SelectionMode)
Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-
trolled.

An alarm of the queue is presented. It is identified by its alarm type (event type) which
means the name of the alarm (event) in the GeViScope Setup event list and also by the para-
meter "selectionmode". The parameter "selectionmode" defines which alarm in the queue
will be selected.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
event type TypeID The alarm type (event type)
selection
mode

SelectionMode first = first active alarm in queue
next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC change scene by name
Action name:VCChangeSceneByName(Viewer, Scene)
Action category: command
The action displays a scene in the GSCView with the given viewer client number.
The scene is identified by its namewhich is case insensitive. (e.g. "MyScene" equal
"myscene")

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
scene Scene The name of the scene that should be displayed

VC clear scene by name
Action name:VCClearSceneByName(Viewer, Scene)
Action category: command
The action clears a scene in the GSCView with the given viewer client number.
The scene is identified by its namewhich is case insensitive. If the scene is currently not
active it will be displayed after the action is executed. (e.g. "MyScene" equal "myscene")

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
scene Scene The name of the scene that should be cleared

VC full mode
Action name:VCFullMode(Viewer, FullMode, SensitiveAreaEnabled)
Action category: command
TheGscView with the given viewer client number can be switched into full mode display or
normal mode display.
In full mode display GscView offers the possibility to fade in controls like the tool bar or the
side bar if the user moves themouse cursor in the near of the window borders. This behavior
can be controlled by the Parameter "Sensitive area enabled".
Parameter Function
viewer Viewer Global viewer client number, identifies the GscView that

should be remote controlled
full mode FullMode yes = switch to full mode display

no = switch to normal mode display
sensitive area
enabled

SensitiveAreaEnabled yes = moving mouse cursor in the near of the window bor-
ders causes controls to fade in
no = no controls fade in

VC set audio level
Action name:VCSetAudioLevel(Viewer, AudioLevel)
Action category: command
The volume of the audio output of the GSCView with the given viewer client number can be
controlled.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
audio
level

AudioLevel 0 = audio output off
100 = audio output in maximum volume

VC show viewer text
Action name:VCShowViewerText(Viewer, ShowText)
Action category: command
The text fade-in of all viewers of the GSCView with the given viewer client number can be
switched on and off.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
show
text

ShowText yes = switch text fade-in on
no = switch text fade-in off

VC stretch mode
Action name:VCStretchMode(Viewer, StretchMode)
Action category: command
TheGSCView with the given viewer client number can be switched into stretchedmode dis-
play or normal mode display.

In the stretched view, the viewers are stretched to the available size in the GSCView main
window. In the normal mode display the viewers are sized in 4:3 ratio.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
stretch
mode

StretchMode yes = switch to stretched mode display
no = switch to normal mode display

Viewer change scene
Action name:ViewerChangeScene(Viewer)
Action category: command
The action displays the scene where the viewer with the global number on any GSCView in
the network belongs to.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled

Viewer clear
Action name:ViewerClear(Viewer)
Action category: command
The action clears the active viewer of the GSCView with the given viewer client number or
the viewer with the global number on any GSCView in the network.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
or
Global number of a viewer on any GSCView in the network

Viewer clear scene
Action name:ViewerClearScene(Viewer)
Action category: command

The action clears the scene where the active viewer of the GSCView with the given viewer
client number or the viewer with the global number on any GSCView in the network belongs
to.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
or
Global number of a viewer on any GSCView in the network

Viewer clear text output
Action name:ViewerClearTextOutput(Viewer)
Action category: command
The action doesn't display a text in the active viewer of the GSCView with the given viewer
client number or the viewer with the global number on any GSCView in the network any-
more.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled or Global number of a viewer on any GSCView in the network

Viewer connect
Action name:ViewerConnect(Viewer, Channel, PlayMode)
Action category: command
Display pictures of a video channel on the active viewer of the GscView with the given
viewer client number or on the viewer with the global number on someGscView in the net-
work.
The parameter "play mode" defines in whichmode the pictures are presented (live, forward,
backward).
Parameter Function
viewer Viewer Global viewer client number, identifies the GscView that should be remote con-

trolled
or
Global number of a viewer on some GscView in the network

channel Channel Global number of the media channel
play
mode

PlayMode play stop = if the viewer is already displaying pictures from that channel, it is
stopped; if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the actual position; if
not display of pictures with normal speed starts at the beginning of the data-
base
play backward = if the viewer is already displaying pictures from that chan-
nel, it is displaying pictures in normal speed backward from the actual pos-
ition; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" but with high speed
fast backward = like "play backward" but with high speed
step forward = like "play forward" but only one picture
step backward = like "play backward" but only one picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = like "play forward" but only pictures that belong to event record-
ings
prev event = like "play backward" but only pictures that belong to event
recordings
peek live picture = display only one actual live picture
next detected motion = like "play forward" but only pictures with motion in it

Parameter Function
(if no MOS search area is defined in GscView the whole picture size is used for
it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GscView the whole picture size is used
for it) are displayed; the display stops after motion is detected

Viewer connect live
Action name:ViewerConnectLive(Viewer, Channel)
Action category: command
This action displays live pictures of a video channel on the active viewer of the GSCView
with the given viewer client number or on the viewer with the global number on any
GSCView in the network.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
or
Global number of a viewer on any GSCView in the network

channel Channel Global number of the media channel

Viewer export picture
Action name:ViewerExportPicture(Viewer, FilePath)
Action category: command
The action exports the current picture of the active viewer of the GSCView with the given
viewer client number or the viewer with the global number on any GSCView in the network.

The actual picture is exported as a windows bitmap graphic file in the GSCView directory or
in the path (local or UNC) defined via the parameter "file path".

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
or
Global number of a viewer on any GSCView in the network

file
path

FilePath Path (local or UNC) where the picture should be exported to

Viewer jump by time
Action name:ViewerJumpByTime(Viewer, Channel, PlayMode, TimeInSec)
Action category: command
The action displays pictures of a video channel on the active viewer of the GSCView with
the given viewer client number or on the viewer with the global number on any GSCView in
the network.

The parameter "play mode" defines in whichmode the pictures are presented (live, forward,
backward .).

The parameter "time in sec" defines the time span that the start of the replay should be
moved from the actual timestamp.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled

Parameter Function
or
Global number of a viewer on any GSCView in the network

channel Channel Global number of the media channel
play
mode

PlayMode play stop = if the viewer is already displaying pictures from that channel, it
is stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, it is displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion
in it (if no MOS search area is defined in GSCView the whole picture size is
used for it) are displayed; the display stops after motion is detected

time in
sec

TimeInSec Time span that the start of the replay should be moved from the actual
timestamp

Viewer maximize
Action name:ViewerMaximize(Viewer, Maximize)
Action category: command
The active viewer of the GSCView with the given viewer client number or the viewer with
the global number on any GSCView in the network which should be remote controlled.

The parameter "maximize" defines whether the viewer should be displayed inmaximized
mode or not.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
or
Global number of a viewer on any GSCView in the network

maximize Maximize yes = display the viewer in maximized mode
no = display the viewer in normal mode

Viewer play from time
Action name:ViewerPlayFromTime(Viewer, Channel, PlayMode, Time)
Action category: command
Display pictures of a video channel on the active viewer of the GscView with the given
viewer client number or on the viewer with the global number on someGscView in the net-
work.

The parameter "play mode" defines in whichmode the pictures are presented (live, forward,
backward, .).
The parameter "time" defines the timestampwhere the replay of the recorded video should
start.
Parameter Function
viewer Viewer Global viewer client number, identifies the GscView that should be remote con-

trolled
or
Global number of a viewer on some GscView in the network

channel Channel Global number of the media channel
play
mode

PlayMode play stop = if the viewer is already displaying pictures from that channel, it is
stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, it is displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

time Time Timestamp where the replay of the recorded video should start. The para-
meter should be defined in the following format:
"2009/02/13 07:22:00,594 GMT+01:00"

Viewer print picture
Action name:ViewerPrintPicture(Viewer)
Action category: command
The action prints out the current picture of the active viewer of the GSCView with the given
viewer client number or the viewer with the global number on any GSCView in the network.

The print out is done on the default printer of the PC onwhich GSCView is running.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled or Global number of a viewer on any GSCView in the network

Viewer select
Action name:ViewerSelect(Viewer)
Action category: command
The action declares the viewer with the global number on any GSCView in the network to
the active viewer of the corresponding GSCView.

Parameter Function
viewer Viewer Global number of a viewer on any GSCView in the network

Viewer set play mode
Action name:ViewerSetPlayMode(Viewer, PlayMode, PlaySpeed)
Action category: command
The action sets the "play mode" of the active viewer of the GSCView with the given viewer
client number or the viewer with the global number on any GSCView in the network.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
or
Global number of a viewer on any GSCView in the network

play
mode

PlayMode play stop = if the viewer is already displaying pictures from that channel, it is
stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel, it
is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, it is displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used for
it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

play
speed

PlaySpeed Speed rate for fast forward/backward (2.)

Viewer show alarm by instance
Action name:ViewerShowAlarmByInstance(Viewer, AlarmID, PlayMode)
Action category: command
The action displays pictures of an alarm on theGSCView with the given viewer client num-
ber in the network.

The alarm is identified by its alarm instance ID (event instance ID). Every alarm (event) is
assigned a unique instance ID at creation time by the GeViScope server.

The parameter "play mode" defines in whichmode the pictures are presented (live replay,
replay event pictures, .).

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled

Parameter Function
instance
ID

AlarmID The alarm instance ID (event instance ID)

play
mode

PlayMode Show alarm using default settings = display alarm pictures using the default
settings defined in the GeViScope setup
Live replay = display live pictures of the cameras belonging to the alarm con-
figuration
replay event pictures = replay the pictures belonging to the alarm (only once)

continuous event replay = replay the pictures belonging to the alarm
continuously in a loop
show first alarm picture only = only display the first picture belonging to the
alarm

Viewer show alarm by key
Action name:ViewerShowAlarmByKey(Viewer, ForeignKey, PlayMode)
Action category: command
The action displays pictures of an alarm on theGSCView with the given viewer client num-
ber in the network.

The alarm is identified by its "foreign key". The "foreign key" was assigned explicit to the
alarm as the alarm was started.

The parameter "play mode" defines in whichmode the pictures are presented (live replay,
replay event pictures .).

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
foreign
key

ForeignKey The foreign key that was assigned to the alarm as the alarm was started

play
mode

PlayMode play stop = if the viewer is already displaying pictures from that channel, it
is stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, it is displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

Viewer show alarm by type
Action name:ViewerShowAlarmByType(Viewer, TypeID, ForeignKey, PlayMode)
Action category: command
The action displays pictures of an alarm on theGSCView with the given viewer client num-
ber in the network.

The alarm is identified by its alarm type and optional by its foreign key. The alarm type
(event name) is defined in the GeViScope setup. The foreign key was assigned explicit to
the alarm as the alarm was started. It is optional. If it is not set, the last alarm with the
defined alarm type is displayed.

The parameter "play mode" defines in whichmode the pictures are presented (live replay,
replay event pictures .).

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
alarm
type

TypeID Type (event name) of the alarm, defined in the GeViScope setup

foreign
key

ForeignKey The foreign key that was assigned to the alarm as the alarm was started

play
mode

PlayMode play stop = if the viewer is already displaying pictures from that channel, it
is stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, it is displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

Viewer change sync audio/video
Action name:ViewerSyncAudioAndVideo(Viewer, EnableSync)
Action category: command
The active viewer of the GSCView with the given viewer client number or the viewer with
the global number on any GSCView in the network should be remote controlled.

The parameter "enable sync" defines whether audio and video should be synchronized or
not.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be

remote controlled
or
Global number of a viewer on any GSCView in the network

enable
sync

EnableSync yes = synchronize audio and video
no = don't synchronize audio and video

Viewer text output
Action name:ViewerTextOutput(Viewer, Text)
Action category: command
The action displays a text in the active viewer of the GSCView with the given viewer client
number or the viewer with the global number on any GSCView in the network.
Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-

trolled
or
Global number of a viewer on any GSCView in the network

text
string

Text Text that should be displayed in the picture

Viewer notification actions
Viewer notifications are fired by GSCView while GSCView is remote controlled. To enable
remote controlling GSCView the "Remote control" setting in GscProfileManager and a
global unique viewer client number has to be configured. To enable GSCView sending
viewer notifications the "Send notification actions" settings in GscProfileManager have to
be configured.

Image export notification
Action name:ImageExportNotification(User, Destination, DestinationType, TimeStamp,
TimeEnd, Channels, ClientHost, ClientType, ClientAccount)
Action category: notification
A single image or a video sequence has been exported by aGSCView in the network.

GSCView has fired this notification because a single picture has been exported via a View-
erExportPicture action while GSCView is remote controlled or because the user has manu-
ally exported a picture or a video sequence in GSCView.
Parameter Function
user User GeViScope user, who

has done the export
destination Destination Path (local or UNC)

where the picture or
sequence was exported

destination type DestinationType 0 = single image
1 = backup file (GBF)
2 = video file (MPEG,
Video DVD, MPEG4CCTV
raw)
3 = snapshot to clip-

Parameter Function
board
4 = print picture

time stamp TimeStamp Timestamp belonging to
the picture exported or
belonging to the first pic-
ture of the exported
video sequence. The
parameter is transmitted
in the following format:
"2009/05/06
14:47:48,359
GMT+02:00"

end time TimeEnd Timestamp belonging to
the last picture of the
exported video
sequence. The para-
meter is transmitted in
the following format:
"2009/05/06
14:47:48,359
GMT+02:00"

channels Channels List of video channels
that are included in the
export result

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future use!

client account ClientAccount Windows user account
under that GSCView is
running

Scene store modification
Action name:SceneStoreModification(Viewer, SceneStoreID, SceneStoreName,
TimeStamp, ModificationType, User, ClientHost, ClientType, ClientAccount)
Action category: notification

Scene storemodification.
Parameter Function
viewer Viewer Global number of a viewer on some GSCView in the network
scene store
GUID

SceneStoreID Scene store GUID.

scene store
name

SceneStoreNam-
e

Scene store name.

time stamp TimeStamp Time stamp.
modification
type

Modi-
ficationType

Modification type.

user User Name of the user.
client host ClientHost Host name of the PC where GSCView is running
client type ClientType 1 = GSCView

All other values are for future use!
client account ClientAccount Windows user account under that GSCView is running

VC alarm queue notification
Action name:VCAlarmQueueNotification(Viewer, Notification, AlarmID, TypeID, Cli-
entHost, ClientType, ClientAccount)
Action category: notification
The state of the alarm queue of the GSCView with the transmitted viewer client number has
been changed.

GSCView has fired this notification because the state of its alarm queue has been changed
via a VCAlarmQueue... action while GSCView is remote controlled or because the user has
manually changed the state of the alarm queue in GSCView.

An alarm can be identified by its alarm instance ID (event instance ID). Every alarm (event)
is assigned a unique instance ID at creation time by the GeViScope server.

Alternatively the alarm can be identified by its alarm type (event type) whichmeans the
name of the alarm (event) in the GeViScope Setup event list.

Parameter Function
viewer Viewer Global viewer client num-

ber, identifies the
GSCView that fired this
notification

notification Notification New alarm = an new
alarm occurred
Presented = an alarm was
presented
Stacked = an alarm was
stacked in the queue,
because the queue is
blocked by an active alarm

Confirmed = an alarm was
confirmed
Removed = an alarm was
removed from the queue
Last confirmed = the last
alarm in the queue was
confirmed
Last removed = the last
alarm was removed from
the queue
List confirmed = there are
no more unconfirmed
alarms in the queue
List empty = there are no
more alarms in the queue

instance ID AlarmID The alarm instance ID
(event instance ID)

event type TypeID The alarm type (event
type)

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future use!

Parameter Function
client account ClientAccount Windows user account

under that GSCView is run-
ning

VC scene changed
Action name:VCSceneChanged(Viewer, Scene)
Action category: notification
The active scene of the GSCView with the transmitted viewer client number has been
changed.

GSCView has fired this notification because its active scene has been changed via a
VCChangeSceneByName or ViewerChangeScene action while GSCView is remote con-
trolled or because the user has manually changed the active scene in GSCView.

Parameter Function
viewer Viewer Global viewer client number, identifies the GSCView that fired

this notification
scene Scene The name of the scene that is displayed after the change

Viewer cleared
Action name:ViewerCleared(Viewer, ClientHost, ClientType, ClientAccount)
Action category: notification
The viewer with the transmitted global number on someGSCView in the network has been
cleared.

GSCView has fired this notification because one of its viewers has been cleared via a View-
erClear action while GSCView is remote controlled or because the user has manually
cleared the viewer in GSCView.

Parameter Function
viewer Viewer Global number of a viewer on some GSCView in the network
client host ClientHost Host name of the PC where GSCView is running
client type ClientType 1 = GSCView

All other values are for future use!
client account ClientAccount Windows user account under that GSCView is running

Viewer connected
Action name:ViewerConnected(Viewer, Channel, PlayMode, ClientHost, ClientType, Cli-
entAccount)
Action category: notification
The viewer with the transmitted global number on someGSCView in the network has been
connected.

GSCView has fired this notification because one of its viewers has been connected via a
ViewerConnect or ViewerConnectLive action while GSCView is remote controlled or
because the user has manually connected the viewer in GSCView.

The parameter "play mode" defines in whichmode the pictures are presented (live, forward,
backward, .).

Parameter Function
viewer Viewer Global number of a

viewer on some
GSCView in the network

channel Channel Global number of the
media channel

play mode PlayMode play stop = if the viewer
is already displaying pic-
tures from that channel,
it is stopped; if not the
newest picture in the
database is displayed
play forward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed forward from
the actual position; if
not display of pictures
with normal speed
starts at the beginning
of the database
play backward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed backward
from the actual position;
if not display of pictures
with normal speed
starts at the end of the
database
fast forward = like "play
forward" but with high
speed
fast backward = like
"play backward" but
with high speed
step forward = like
"play forward" but only
one picture
step backward = like
"play backward" but
only one picture
play BOD = display the
first (the oldest) picture
in the database
play EOD = display the
last (the newest) pic-
ture in the database
live = display live pic-
tures
next event = like "play
forward" but only pic-
tures that belong to
event recordings
prev event = like "play

Parameter Function
backward" but only pic-
tures that belong to
event recordings
peek live picture = dis-
play only one actual live
picture
next detected motion =
like "play forward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected
prev detected motion =
like "play backward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future use!

client account ClientAccount Windows user account
under that GSCView is
running

Viewer play mode changed
Action name:ViewerPlayModeChanged(Viewer, Channel, PlayMode, ChannelTime, Cli-
entHost, ClientType, ClientAccount)
Action category: notification
The playmode of the viewer with the transmitted global number on someGSCView in the
network has been changed.

GSCView has fired this notification because the playmode of one of its viewers has been
changed via a ViewerConnect, ViewerConnectLive, ViewerSetPlayMode, View-
erPlayFromTime, ViewerJumpByTime or one of the ViewerShowAlarmBy. actions while
GSCView is remote controlled or because the user has manually changed the playmode of
the viewer in GSCView.
Parameter Function
viewer Viewer Global number of a

viewer on some
GSCView in the network

channel Channel Global number of the
media channel, dis-
played in the viewer

Parameter Function
play mode PlayMode play stop = if the viewer

is already displaying pic-
tures from that channel,
it is stopped; if not the
newest picture in the
database is displayed
play forward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed forward from
the actual position; if
not display of pictures
with normal speed
starts at the beginning
of the database
play backward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed backward
from the actual position;
if not display of pictures
with normal speed
starts at the end of the
database
fast forward = like "play
forward" but with high
speed
fast backward = like
"play backward" but
with high speed
step forward = like
"play forward" but only
one picture
step backward = like
"play backward" but
only one picture
play BOD = display the
first (the oldest) picture
in the database
play EOD = display the
last (the newest) pic-
ture in the database
live = display live pic-
tures
next event = like "play
forward" but only pic-
tures that belong to
event recordings
prev event = like "play
backward" but only pic-
tures that belong to
event recordings
peek live picture = dis-
play only one actual live
picture

Parameter Function
next detected motion =
like "play forward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected
prev detected motion =
like "play backward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

channel time ChannelTime Timestamp belonging to
the picture presented in
the viewer directly after
the plamode had
changed. The para-
meter is transmitted in
the following format:
"2009/05/06
14:47:48,359
GMT+02:00"

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future use!

client account ClientAccount Windows user account
under that GSCView is
running

Viewer selection changed
Action name:ViewerSelectionChanged(Viewer, Channel, PlayMode, ClientHost, Cli-
entType, ClientAccount)
Action category: notification

The active viewer on someGSCView in the network has been changed.
GSCView has fired this notification because the user has selected one of its viewers by
mouse click or by dragging a camera onto one of its viewers.

GSCView only fires the notification, if a camera is displayed on the selected viewer.
Parameter Function
viewer Viewer Global number of a

viewer on some
GSCView in the network

channel Channel Global number of the
media channel, dis-
played in the viewer

Parameter Function
play mode PlayMode play stop = if the viewer

is already displaying pic-
tures from that channel,
it is stopped; if not the
newest picture in the
database is displayed
play forward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed forward from
the actual position; if
not display of pictures
with normal speed
starts at the beginning
of the database
play backward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed backward
from the actual position;
if not display of pictures
with normal speed
starts at the end of the
database
fast forward = like "play
forward" but with high
speed
fast backward = like
"play backward" but
with high speed
step forward = like
"play forward" but only
one picture
step backward = like
"play backward" but
only one picture
play BOD = display the
first (the oldest) picture
in the database
play EOD = display the
last (the newest) pic-
ture in the database
live = display live pic-
tures
next event = like "play
forward" but only pic-
tures that belong to
event recordings
prev event = like "play
backward" but only pic-
tures that belong to
event recordings
peek live picture = dis-
play only one actual live
picture

Parameter Function
next detected motion =
like "play forward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected
prev detected motion =
like "play backward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future use!

client account ClientAccount Windows user account
under that GSCView is
running

	GeViScope SDK
	GeViScope Software Development Kit (SDK)
	Introduction
	Contents
	Files and directory structure of the SDK
	Setting up a virtual test environment
	Introduction
	Step by step
	Background information

	Overview of the interfaces in the SDK
	Introduction
	Building blocks of functionality

	Remote control GSCView by actions
	Introduction
	Step by step
	Background information

	Supported development platforms
	Guidelines and hints
	Introduction
	General hints
	Working with handles and instances
	Interaction between DBI and MediaPlayer
	Enumeration of setup data
	PLC, actions and events
	Media channel IDs
	Handling connection collapses
	Using MediaPlayer with GeViScope and MULTISCOPE III servers

	Using the SDK with .NET
	Deploying a custom solution based on the .NET wrapper
	GeViScope REGISTRY
	Using the GscRegistry with .NET

	GSCView data filter plugins
	Introduction
	General hints
	The customized data filter DLL interface
	Creating the filter criteria

	Examples overview
	Examples grouped by programming tasks
	Examples grouped by development platforms

	Action documentation
	ATM / ACS
	ACS access denied
	ACS access granted
	ACS raw answer
	ACS raw data
	ATM raw answer
	ATM raw data
	ATM transaction

	Audio control
	ABC connect
	ABC disconnect
	ABC play file
	Sensor audio alarm

	Backup actions
	Abort all auto backups
	Abort auto backup
	Auto backup capacity warning
	Auto backup capacity file auto deleted
	Auto backup capacity out of disk space
	Auto backup file done
	Auto backup file progress
	Auto backup file started
	Auto backup operation done
	Auto backup operation started
	Auto backup schedule done
	Auto backup schedule started
	Backup event
	Event backup done
	Event backup file done
	Event backup file progress
	Event backup file started
	Event backup started
	Start auto backup

	Camera control
	Auto focus off
	Auto focus on
	Camera backlight compensation mode
	Camera clear preset text
	Camera day/night mode
	Camera light off
	Camera light on
	Camera manual iris off
	Camera manual iris on
	Camera off
	Camera on
	Camera pump off
	Camera pump on
	Camera RAW output
	Camera select char mode
	Camera set preset text
	Camera spec func U off
	Camera spec func U on
	Camera spec func V off
	Camera spec func V on
	Camera spec func X off
	Camera spec func X on
	Camera spec func Y off
	Camera spec func Y on
	Camera stop all
	Camera text off
	Camera text on
	Camera tour start
	Camera tour stop
	Camera version off
	Camera version on
	Camera wash-wipe off
	Camera wash-wipe on
	Move to default position
	Clear default position
	Clear preset position
	Save default position
	Fast speed off
	Fast speed on
	Focus far
	Focus near
	Focus stop
	Iris close
	Iris open
	Iris stop
	Move to absolute position
	Move to by speed
	Move to relative position
	Pan auto
	Pan left
	Pan right
	Pan stop
	Move to preset position
	Clear preset position
	Save preset position
	Set camera text
	Tilt down
	Tilt stop
	Tilt up
	Zoom in
	Zoom out
	Zoom stop

	Cash management actions
	Safebag close
	Safebag data
	Safebag open
	Safebag passing of risk data
	Safebag passing of risk start
	Safebag passing of risk stop

	Device information
	Device found
	New firmware received
	Device plugin error
	Device plugin state
	Device reattached
	Device removed

	Digital contacts
	Digital input
	IOI43 reset mainboard
	IOI43 temperature notification
	IOI43 watchdog activate
	IOI43 watchdog deactivate
	IOI43 watchdog trigger
	Key pressed
	Key released
	Set digital output
	Set system LED
	Set system LED to blink

	Lenel
	Lenel access event
	Lenel fire event
	Lenel intercom event
	Lenel raw data
	Lenel refresh names
	Lenel security event
	Lenel video event

	Logistic
	Log barcode data
	Log barcode data LPS
	Log NPR recognition

	LPS Actions
	LPS position data
	LPS query position

	POS
	Barcode data
	Filling pump status
	Interface raw answer
	Interface raw data
	POS data
	POS status
	Terminal article data
	Terminal payment data

	Remote export
	Cancel export
	Export finished
	Export progress
	Initialize remote export
	Set export marker
	Start remote export
	Start scene store

	SKIDATA
	SKIDATA control
	SKIDATA device event
	SKIDATA entry
	SKIDATA exit
	SKIDATA transaction

	System actions
	Custom action
	Database recording info per ring
	Database recording info total
	Database started
	Event recording changed
	Event started
	Event stopped
	FRC notification
	GEMOS alarm
	Kill all events
	Kill event
	Kill event by instance
	Live check
	Set clock
	Setup changed
	Setup upload progress
	Set watchdog
	SMRP viewer cleared
	SMRP viewer connected
	SMTP mail
	Start event
	Stop all events
	Stop event
	Stop event by instance
	System error
	System info
	System settings changed
	System started
	System terminating
	System warning
	Transfer binary buffer
	Transfer binary channel buffer
	User login
	User login failed
	User logout

	Video control actions
	Activate external process
	Change AD parameter set
	Change camera profile
	Change CPA parameter set
	Change OBTRACK parameter set
	Change VMD parameter set
	Channel error
	Channel info
	Channel live check
	Channel warning
	CPA measurement
	IAS settings changed
	IP camera raw command
	Make CPA reference image
	Media channel setup
	NPR raw data
	NPR recognition
	OBTRACK channel counter
	OBTRACK channel counter threshold
	OBTRACK channel set counter
	OBTRACK frame raw data
	OBTRACK group counter
	OBTRACK group counter threshold
	OBTRACK group set counter
	OBTRACK object raw data
	OBTRACK tunnel alarm
	Sensor alarm finished
	Sensor inhibit alarm finished
	Sensor inhibit video alarm
	Sensor video alarm
	Set system time
	Set test picture mode
	Video contrast detected
	Video contrast failed
	Video set image brightness
	Video set image contrast
	Video set image saturation
	Video source has changed
	Video sync detected
	Video sync failed

	Viewer actions
	VC alarm queue confirm
	VC alarm queue confirm by instance
	VC alarm queue confirm by type
	VC alarm queue remove
	VC alarm queue remove by instance
	VC alarm queue remove by type
	VC alarm queue select
	VC alarm queue select by instance
	VC alarm queue select by type
	VC change scene by name
	VC clear scene by name
	VC full mode
	VC set audio level
	VC show viewer text
	VC stretch mode
	Viewer change scene
	Viewer clear
	Viewer clear scene
	Viewer clear text output
	Viewer connect
	Viewer connect live
	Viewer export picture
	Viewer jump by time
	Viewer maximize
	Viewer play from time
	Viewer print picture
	Viewer select
	Viewer set play mode
	Viewer show alarm by instance
	Viewer show alarm by key
	Viewer show alarm by type
	Viewer change sync audio/video
	Viewer text output

	Viewer notification actions
	Image export notification
	Scene store modification
	VC alarm queue notification
	VC scene changed
	Viewer cleared
	Viewer connected
	Viewer play mode changed
	Viewer selection changed

