GeViScope SDK

GEUTEBRUCK

Version 04.2013

GeViScope Software Development Kit (SDK)

Introduction

The GeViScope SDK consists of a collection of free software interfaces for the
GEUTEBRUCK DVRs GeViScope and RePorter. It can be used to integrate these devices
in custom applications and although for linking not yet supported peripherals.

The interfaces are based on native Win32 DLLs. So they can be used with various devel-
opment platforms of the Windows OS.

To support the .NET technology the SDK examples contain wrapper classes based on
C++/CLI. These wrapper examples can be freely used, modified and extended by the SDK
users. The C# examples included in the SDK demonstrate, how the wrappers can be used
by custom applications.

Contents

Files and directory structure of the SDK
Setting up a virtual test environment
Remote control GSCView

Overview of the interfaces in the SDK
Supported development platforms
Guidelines and hints

GSCView data filter plugins

Examples overview

Action documentation

Documentation-History Version 3.9 / PME

Files and directory structure of the SDK

During the installation of the SDK the environment variable %GSCSDKPATH% which
points to the root directory of the SDK is set. This reference path is used in all examples.

%GSCSDKPATH%\Bin Contains all dynamic link libraries and is the target directory for the
compiled examples

%GSCSDKPATH%\include| Contains all Delphi import units, C++ header and cppfiles
%GSCSDKPATH%\Ilib Contains all lib files for Borland C++ Builder and Microsoft Visual C++

The matching interface units between C++ and Delphi have the same name but compiler
specific file extensions.

Setting up a virtual test environment

Introduction

All required components for setting up a virtual GeViScope device are included in the SDK.
So an independent development of custom solutions can be achieved without any special
hardware required.

After starting up the GeViScopeserver (part of the virtual GeViScope device) GeViScope
software can be used with full function for two hours. After that time the functionality is lim-
ited. After stop and restart of the server full functionality is offered for two hours again.

Step by step
After the successful installation of the SDK all necessary files exist in the installation folder
(normally “%HOMEPATH%\My Documents\GeViScopeSDK?”).

Step 1: Assign local policy “Lock pages in memory”
To run GeViScopeserver on your local machine, a local policy needs to be assigned to the

user account under which GeViScope server should work.
Please open the “Local Security Policy” dialog in the control panel — Administrative Tools.

— — = = —_— —_— ~
T Local Security Policy - - - - ——— ;I—J':' | S X
File Action View Help
XE= H=E
B Security Settings Policy = Security Setting -
: 3 fccolupntlF'_DHCIES iz) Enable computer and user accounts to be trusted for delega...
“« 58 _?c; do.t|;|e|s. 2 Force shutdown from a remote systern Administrators
o ibmeililis e AN | Generate security audits LOCAL SERVICE NETWO...
» |3 User Rights Assignment] o
= . s iz} Impersonate a client after authentication LOCAL SERVICE,NETWO...
> | g Security Options ;
i+ [Windows Firewall with Advanced Seci|| " Increace 2 prcessworking et i
% Metwork List Manager Policies ui) Increase scheduling priority Administrators
. - Public Key Policies tu) Load and unload device drivers Administrators
> || Software Restriction Policies b Lock pages in memory meyer2202
& 7] Application Control Policies 1z) Log on as a batch job SQLServer2005MS5QLUS...
b .g IP Security Policies on Local Compute i Log on as a service SQLServer20055QLEBrow...
> || Advanced Audit Policy Configuration|| 1 Manage auditing and security log Administrators
iz) Modify an object label
o) Modify firmware environment values Administrators
i) Perform volume maintenance tasks Administrators
i) Profile single process Administrators
< Profile system performance Administrators, NT SERVL..
/z) Remove computer from docking station Administrators, Users 3
;| Replace a process level token LOCAL SERVICE, NETWO...
‘| Restore files and directories Administrators,Backup ...
15) Shut down the system Administrators, Users,Ba...
1o Synchronize directory service data
5] Take ownership of files or other objects Administrators [|
< 1n b -
L -

With “Security Settings / Local Policies / User Rights Assignment” the privilege “Lock
pages in memory” has to be assigned to the user account under which GeViScope server
should run.

The user has to be a member of the local Administrators group.

The user has to logout and login again to let the setting take effect.

Step 2: unpack the test files

Unpack the file \BIN\GeViScope.Database.zip” to the root directory of your system drive
(normally “C:”). Afterwards the file “C:\GeViScope.Database” should exist. Please note that
the file is not seen in the windows explorer if hidden files and folders are masked out.
Unpack the file \BIN\DatabaseBackup.zip” to the sub folder ABIN” of the GeViScope SDK
base directory (normally “%HOMEPATH%\My Documents\GeViScopeSDK?”). After that
the file \BIN\DatabaseBackup.gpf“, which contains a test backup file in GBF format
(“GEUTEBRUCK Backup File”) should exist.

Step 3: start the GeViScopeserver

Start the server by double clicking on file \BIN\GSCServer.exe“. Now a console application
should start.

- 4 ¥
.3912] GlabalObjectInitialize
internal ID generator initialized }23372836854775808
sing action definition v. 58 ~ 24_E B
121 DEMO HODE
ntrol.3912] DEP Matchdog disahled
] 'ulu!rtl
4 ”-1l| hidog enabled
l' aim-a
61 APF Handler =t
‘:-THHFE 39121 Framework started.

LTRN.
0 [DBE,

iain loop.

o lume {18 {-‘ 1. 678-Y832-11dd—-aS5he—806de1YVEE

- d.
) 2] ed in B.354544 seconds.
INFO [f B. 1ﬁH:lTi 1 |'I|'|r oBackupHanager»r started.

Step 4: import the test setup

Start the GSCSetupsoftware (file \BIN\GSCSetup.exe”) and establish a connection to the
local server. Use the following login information:

Username = sysadmin

Password = masterkey

Send the setup once to the server by using the menu entry “Send setup to server”.

The test setup “\BIN\Ge ViScope SDKSetup.set can be imported into the server with the help
of the menu entry “Import setup from file®. Afterwards it should be send to the server once
again.

Step 5: view live video and backup video in GSCView

Now the correct setup of the test environment should be tested. For that purpose the
GSCViewsoftware (file \BIN\GSCView.exe”) can be started and again a connection to the
local server should be established. After a successful connection media channels are avail-
able and can be viewed. Simply drag the media channels on the viewers of GSCView.

The menu entry “Open backup file...” allows opening the test backup file “\BIN\Data-
baseBackup.gpf‘, which also contains media channels that can be displayed. Please check
the correct function of the backup by play back the video material.

Step 6: Use of tool "\BIN\ GSCPLCSimulator.exe”

The software “BIN\ GSCPLCSimulator.exe” serves as a monitoring tool for all messages
(actions) and events that are transported inside the complete system. Furthermore actions
can be triggered and events can be started and stopped.

After building up a connection to the local server all action traffic is displayed in a list.

This tool is extremely helpful for testing of custom applications based on the SDK and for
analyzing message flow in the complete system.

Background information

To provide a test environment with full functionality the GeViScope media plugin“MCS”
(Media Channel Simulator) is used. It simulates real video media channels by channeling
test pictures into the GeViScopeserver. 16 media channels can be used as live channels or
can be recorded into the test database. Furthermore the channels create messages
(actions) that allow using them as base for developing video analysis software.

The media plugin®“MCS” is part of the SDK including source code (development platform Bor-
land C++ Builder 6) and documentation (please see topic “Examples overview” for more
information).

Overview of the interfaces in the SDK

Introduction

This document gives a short overview of the different interfaces that belong to the SDK.
Please note, that all interfaces include class declarations to access the exported functions
of the dynamic link libraries. To use them in C++, the matching cpp files and the lib files cor-
responding to the DLLs have to be added to the custom project.

(GscDBLdIl (GscDBLh [.pas)

I(Gstzl'hlletliaplayer.tlll (GscMediaplayer.h/ .pas)

TGscServer
[(HGscServer)

TGscDataSet
(HGscDataSet)

TGscBackupWriter
(HGscBackupWriter)

_(

)

TGscDataPacket
(HGscDataPacket)

(TGscWiewer
TGscOffscreenviewer
L (HGscViewer)

TGscDecompressor
(HGscDecompressor)

—

TGscDecompBuffer
(HGscDecompBuffer)

[TGscliveStream]

(HGscLiveStream)

TGscMpegExport
(HGscMpegExport)

B

]

(TGscMPExport

_

)

k (HGscMPExport)

——

TGscRegistry
(HGscRegistry) Setup access TGscMpegReader
(HGscMpegReader)
TGscPlc TGsclistener
(HGscPlc) (HGscListener)

)

TGscPlcNotification
(GscPlcNatification)

]_

[TGLibDateTime

)

“

ercActinns.dll (GscActions.h/ .pas)

{ Set of functions to handle HGscAction }—/

[GscActionsDispatcher J

Building blocks of functionality
DBI

¢ Low level server and database interface

DVD Export

—_—Jsas

——Depends on.

o Connection handling, GBF access, raw database access (no video display!), media
export functionality, backup functions, access to raw live media (no video display!),

setup data access

Main binary file: GSCDBI.DLL

Main include files (Pascal): GSCDBI.pas

PLC

Listen to events and system notifications

Main binary file: GSCActions.DLL
Main include files (C++): GSCActions.h

TACI

e Telnet Action Command Interface

Allows controlling and monitoring the system

Main include files (Pascal): GSCActions.pas

Supports basic functionality for building blocks “PLC” and “MediaPlayer’

Main include files (C++): GSCDBI.h, GSCDBI.cpp

Complex notification, action and event processing
Listen to, dispatch, create and send actions

o Simple ASCII-Format communication based on Telnet
¢ Allows controlling and monitoring the system

o Received actions need to be parsed

e Touse that interface, the media plugin “GSCTelnetActionCommand” needs to be
installed

MediaPlayer

High level server and database interface including media presentation
Display video, play audio (live and backup)

Integrated export functionality (GBF, MPEG, Video-DVD, Single picture)
Search media data by time or corresponding to event data

Main binary file: GSCMediaPlayer.DLL

Main include files (C++): GSCMediaPlayer.h, GSCMediaPlayer.cpp
Main include files (Pascal): GSCMediaPlayer.pas

OffscreenViewer

o Part of building block “MediaPlayer”
o Same functionality as MediaPlayer, but: no rendering, only decompressing
e Class TGSCOffscreenViewer can be used analogous to TGSCViewer

Media plugin (GeViScope server plugins)

e GeViScope server plugins allow integrating custom peripherals in GeViScope sys-
tems

¢ Channeling of video and/or audio media into the server

¢ Including full access to PLC

e Plugins run as In-Process-DLLs in GeViScope server software

GSCView data filter plugin

e GSCView plugins allow integrating custom data filter frontends in GSCView soft-
ware
e Plugins run as In-Process-DLLs in GSCView software

GSCView data presentation plugin

e GSCView plugins allow customized presentation of event data in GSCView soft-
ware, especially of event data presented in viewed pictures
e Plugins run as In-Process-DLLs in GSCView software

Remote control GSCView by actions

Introduction

The simplest approach to view and browse live and recorded video of one or more GeViS-
copes is to remote control GSCView out of custom solutions.

GSCView can be used in a special mode so that it can be controlled by actions that are sent
from a GeViScope server. The actions can be channeled into the system using the SDK
(GSCDBI.DLL and GSCActions.DLL) in custom applications. As an alternative the actions
can be sent to the TACI interface of the GeViScope server. The TACI interface is a media
plugin of the GeViScope server, which can receive actions as ASCII text commands similar
toa TELNET communication. The TACI plugin has to be licensed.

GeViScope server

GscServer.EXE

J

.
|

Viewer client no. 1000

aclions

-
Custom scenes

GscView.EXE (PC1)

Step by step

actions

r

Viewer client no. 2000
f’ 5

Cuslom scenes

- .
GscView.EXE (PC2)

actions

Custom application

(" GscDBI.DLL

(

Handle connection to single
GeViScopefre_porter device

A

i Internal client logic J

1 !
GscActions.DLL
Send actions to remote |

control GscView

v i

4

The following step by step instructions show how to configure a simple system to demon-
strate remote controlling GSCView. The virtual test environment included in the SDK should
be successfully installed and set up before following these instructions (see topic Setting up

a virtual test environment).

Step 1: start the GeViScope server

Start the server by double clicking on file \BIN\GSCServer.exe“. Now a console application

should start.

e
39121 GlobalObjectlIn
i ttrnal ID Jrnerafn ini

Handle
Framewvork s

» clients ...
2121 TTimeRangeNot if ier::Run

in loop...
Jo lume<{18§F "H-.':"u F832-11dd—-aSht6—806d61726

111y 3
i of 1 GB started in B.354544 szeconds.
IMED [flﬂ A0¢ "l] AutoBac wpManager started.

Step 2: start GSCView
Start the GSCView software (file \BIN\GSCView.exe").
Step 3: start the profile manager

The menu entry “Options — Profile manager...” starts the internal profile manager of
GSCView. The profil manager allows configuring all GSCView settings.

i GscProfleManager

Dptions profiles

!ﬁnesnun:es

bd Files

messe

[1 5ave viewer adjustment per channel

1 Custom buttans 1250 |gg|;|
= 1AM mode
{255 Pecple counter Edit position
Sarip:scenia [Fied window postion
= Profiles | EH Matre: 22 E| [CFisted window size
By Options Prefile uisom bikioris [sensitive area enabled
| M custern butkons ?| [#] Hidde main meny
§ Rights Profile =
v
e ” I-ide bod bar
T | Hide side ba
Mo people counter ﬂ]
4 Users [#]Hide contral bar
[¥]ride status bar

£ Defaut peofile

I Windows Users

| 9 General | <7 Actions &E_wsnt Text u Colars and Fanks ___i
% Connections [=1 Application o Alarms i Connections Scenes
g Yiews
@ Main Window Full mads
Scenas
[] application on kap [¥] Maimized
o Alarm Scenes [streched Yiew Tap Left
roE, :]
¥ Mukimonitor (7] start in Full made o | |
widt Height

Logged on user: messe C:yDokuments und Einstellungen| Al Users)Snwendungsdatent GeviSoopst

Step 4: declare local connection as “connect automatically”

By selecting “Connections” in the section “Resources” the local connection can be declared
as a connection that is automatically built up after starting GSCView. Additional the option

“Reconnect automatically” should be activated.

a GscProfilleManager

LLL

®Resources
H Files
Al Connections
g Yiews
Scenss

& Alarm Scenes

W% pubkinonitor
) Cuskom buttons

|35 Pecple counker

£ Profiles

B Options Profile

§ Rights Profile

“ Users

£ Defaut peofile

I Windows Users

Logged on user: messe

—waw Local

C:yDokuments und Einstellungen| Al Users)Snwendungsdatent GeviSoopst

| Server |Infn

Server lagin

| akost

Username

|s','5a:i'r|in

Passmord
|ll'o'o_oi'ouu

[¥] Save password
[(oisable save password
[CJuser cannot be changed

[¥] Connect automatically
[#] Reconnect automaticaly
[]Hide connection

Server bype

GeviScops)re_porker

Connection
(®) Local computer
Oan

WA via router

() Diskup

If the connection is open in GSCView or GSCSetup, the settings of the connection cannot
be changed. Close all local connections at first to be able to change the connection settings.

Step 5: configure GSCView to be able to remote control it by

actions

The entry “Options profile” in the section “Profiles” shows a tab control with a lot of different
GSCView settings. To be able to remote control GSCView the option “Remote control” on

the “Actions” tab has to be set.

GscProfilleManager

File Edit Hel
bW B

Dptions profiles

[T

Resources
messe

bd Files

Al Connections

@ Yiews

| : : Application |
4, General | T7 Actions

| &Evantlaxt

Raceive viewsr actions Send notification ackions
[&] scenes
= d
lléb Alarm Scenes [¥] remote conkrol [atarm ques
Viewer cliert number (1000 | [Jimage export
W% pubkinonitor —
) Cuskom buttons [vimwer status

',éié People counker to participating serves

f Profiles

B Options Profile

§ Rights Profile

% Users

& Defaut peofile

I Windows Users

Logged on user: messe C:yDokuments und Einstellungen| Al Users)Snwendungsdatent GeviSoopst

The “Viewer client number” should be set to a arbitrary global number that is unique in the
whole system. This global “Viewer client number” identifies this special instance of
GSCView in the whole network. The number is used in different actions to remote control
GSCView.

By contrast the “global number” of a viewer in a custom scene identifies a special viewer in
a user defined scene. Details about user defined scenes will be topic of the next step.

Step 6: user defined scenes

To define user defined scenes in GSCView the entry “Scenes” in section “Resources”
should be selected. By right clicking on one of the predefined scenes new user defined
scenes can be created. For this step by step example two new scenes with the names
“MyStartScene” and “MyScene” have to be added. With the button “Edit scene” the global
numbers of the viewers of the scene and the video channels that should be displayed can be
set.

The “MyStartScene” should be based on the “Matrix 4x4”. The viewers should have the
global numbers 1001 to 1016. Each viewer should display live pictures of a video channel of
the local connection. The video channels can be set via drag & drop while editing the scene.

Mediachannel () Channel 0z {4) Chanme! 004

(B} Channel MOG {8) Chanmne! 008
&

Local

ST

not synchronized
1006

False

{10} Channed 010 {113 Chonnel 011 {12} Channel 812
10 i 12

Local Lecal Laal

Srsaming Streaming Streaming

Syme sl not synehronized nuk synthronized nsk synchronized
bl b 10w iz

Fase Fake Fabse

{14} Channed 014 i {15) Channel 315 {16) Channel 016
LS

Syme mode
lobal number
Loded viewer

Sied of vigwer area; 1095 x 821

The “MyScene” should be based on the “Matrix 2x2” and the viewers should have the global
numbers 1101 to 1104. The viewers should not automatically display any video channel.
They will be used by special actions to display video channels.

I HyScene
Options

| Server | Templates

[+ wis Local

Size of viewer area : 640 x 480

—_

(A

Sync mode
Global nurmber
Locked viewer

not synchronized
1101
False

Sync mode
Global number
Lacked viewer

not synchronized
1102
False

Sync mode not synchronized Sync mode not synchronized
Global nurmber 1103 Global number 1104
Locked wiewer False Locked viewer False
[6]4 J ’ Cancel

Step 7: modify the appearance of GSCView

The appearance of GSCView can be controlled by different settings in the entry “Options pro-
file” of the section “Profiles”. For this test scenario, GSCView should appear as a stupid
video wall without any user controls directly visible in the GSCView application window. To
achieve this, the following options on the “Application” tab have to be set:

a GscProfilleManager

bd Files
Al Connections
g Yiews

Scenes

& Alarm Scenes
W% pubkinonitor
1 Cuskom buttons

|35 Pecple counker

£ Profiles

B Options Profile

§ Rights Profile

“ Users

£ Defaut peofile

I Windows Users

Logged on user: messe

Dptions profiles

messe

S eeneral | =t oacions | @ EventTest | flll colorsandForks | i
T application Q& Alarms Eﬁ, Connections g Scenes
Main Windaw Full mods
[] application on kap [¥] Maimized
[streched View Top Left
[Start in Full mode [I e
. B | Width Height
[T 5ave viewer adjustment per channe 1230 IQQIJ
1 aTM rmode -
_Ed1l' position
Starkup scene
P [Fied window poskion
| BB Mystartscene E| []Fized window size
Custom butbons [[Isensitive area enabled
Mo custon buttons E| el s
] Hide: todl b
Peaple counter g = %
3 | Hide side bar
No people countar ﬂ
[#]Hide contral bar
[¥]ride status bar

C:yDokuments und Einstellungen| Al Users)Snwendungsdatent GeviSoopst

Please keep in mind, that if the option “Sensitive area enabled” is not set and if all “Hide...”

options are set, the main menu of GSCView only can be accessed by pressing F10!

Step 8: save all settings
All settings should be saved by selecting the menu entry “File — Save”.

Step 9: test the system with GSCPLCSimulator

After restarting GSCView it should appear in full mode with 16 viewers displaying live pic-
tures of the video channels of the local connection.

B Gl best g
5

Now start the software “ABIN\ GSCPLCSimulator.exe” to test the system. The
GSCPLCSimulator serves as a monitoring tool for all messages (actions) and events that
are transported inside the complete system. Furthermore actions can be triggered and
events can be started and stopped.

After its start the connection to the local server should be build up automatically and all
action traffic is displayed in alist.

B GeviScope PLC simulator -- sysadmin @ locathost

'A‘ ¥ideo inputs

Connections

i
ng,(:onnect Audio channels
2. Disconnect 1 =) z 3 4 5 £ 7]
: Digital i t
‘Z‘fSettings igital inputs
1 #5123 2|5 |86 |7 |38

Digital outputs

1 = 1 2| 3|4« | 5|8 |7 |38 selected channel [

@ 05:52:34 213 actions subscribed

& 08:52:34 Some actions are unscubscribed!
@ 05:52:34 Al events subscribed

@ 05:52:34 Al blocking filkers subscribed

=] statistics

Log window

+ Enabls

Status: connected Log window: enabled Macra list length: O Macra:

Control area 1 = 1 2 3 4 5 5 7 g System LEDs I D D
2 Media channels Akion! | ﬂ Dialog | Send
(\épEvents - -
Time | Information
(B Blocking filkers (&) 0m:52:33 Found GscDBLdll version 4.9.788.13
. . (3) 05:52:33 Found Gscactions.dll version 4,9,785.13
\(.D.ctu:nn subcripkion
(&) 08:52:33 Found GscactionsDlgs.dll version 4.9,788.13
 Evert subscription @ 03:52:33 Found action definition version 64 [06,05, 2009]
A Eier e (E) 0m:52:33 218 actions loaded
EREL S L @ 03:52:33 Server object created
€ Enable ATM/BCS mode | @' 08:52:33 PLC object created
@ 05:52:34 Triggering aukto connect
45 Disable ATMACS mode @' 08:52:34 Connected to localhost as sysadmin

With the button “Dialog” an action can be selected and with the button “Send” this action can
be send to the GeViScope server. For testing the system first select the action “VC change
scene by name” in the category “Viewer actions” to display “MyScene” on the GSCView
with the global “Viewer client number” 1000.

i Select GeYiscope action

Category:

Action:

Viewer actions -

WC alarm queus confirm [
Y alarm queue confirm by inskance |
W alarm queue confirm by bvpe

WC alarm queus remove

WC alarm queus remove by instance
WC alarm gueue remove by tvpe

WC alarm queue seleck

WC alarm queue select by instance
YC alarm queus select by bype

W change scene by name

WC clear scene by name

WC Full rode

W set audio level

W show viewer bext

W stretch mode

Wiewer change scene

Viewer change sync audio)video
Wiewer clear

Wiewer clear scene

‘Wiewer clear text oukput

Viewer conneck

Wiewer connect live

Viewer export picture

‘Wiewer jump by kime

73 | [2]

"

Parameter Yalue (leave empty For default)

Parameker info [Scene]:
SCENE name.

Action description [MCChangesScensByName]:

Yiewer client change scene by name,

comment
viewer 1000
SCEne I"-’IySu:ene|

Cancel

After sending the action, GSCView should display an “empty

MyScene”.

Gseview = O s

To display video channels in the viewers of “MyScene” the action “Viewer connect live” can
be used. The parameter “viewer” now means the global number of a viewer of “MyScene”,
e.g. 1102. The parameter “channel” should be set to the global number of the video channel
that should be displayed, e.g. 2.

i Select GeYiscope action

Category:

Action:

Viewer actions -

WC alarm queus confirm [
Y alarm queue confirm by inskance |
W alarm queue confirm by bvpe

WC alarm queus remove

WC alarm queus remove by instance
WC alarm gueue remove by tvpe

WC alarm queue seleck

WC alarm queue select by instance
YC alarm queus select by bype

W change scene by name

W clear scene by name

WC Full rode

W set audio level

W show viewer bext

W stretch mode

Wiewer change scene

Viewer change sync audio)video
Wiewer clear

Wiewer clear scene

‘Wiewer clear text oukput

Viewer conneck

Wiewer connect live

Viewer export picture

‘Wiewer jump by kime

73 | [2]

Parameter Yalue (leave empty For default)

comment
viewer 1102
channel 2|

Parameter info [Channel]:
Channel,

Action description [WiewerConneckLive]:
Conneck live camera to the viewer,

Cancel

After sending the action, GSCView displays live video of the video channel 2 on the upper

left viewer in GSCView.

gl GscSDE test image

Encoder: JPEG
Count: 5544

Background information
In GeViScope systems actions are used to communicate between the GeViScope server
and any client application. All available actions can be divided into three groups:

Notification actions (for example “User Login”), command actions (for example “Viewer con-
nect live”) and logical actions (these actions are not directly created by the GeViScope
server and they don’t directly result in any reaction in the GeViScope server, for example
“Custom action”).

All actions are grouped in different categories. The category “Viewer actions” contains all
actions that are relevant for remote controlling GSCView.

To get notifications about GSCView activities, one of the options “Send notification actions”
in the profile manager of GSCView has to be set. All possible notification actions are col-
lected in the action category “Viewer notifications”.

b

L

% Users

GscProfilleManager

File Edit Hel

Resources

bd Files

£ Connections | %% General | U7 Adions | Event Text ol colors and Fanks

@ Yiews

f Profiles

B Options Profile

§ Rights Profile

& Defaut peofile

I Windows Users

Logged on user: messe

By
Dptions profiles

messe

| T Application | #larms gu'f' Connections

Raceive viewsr actions Send notification ackions

[&] scenes

= d

lléb Alarm Scenes [¥] remote conkrol [atarm ques

Viewer cliert number (1000 | [Jimage export

W% pubkinonitor —
) Cuskom buttons [#] vimer stabus
|42 Paople caunker (%) bt participating server

) &5 broadeast to &l

C:yDokuments und Einstellungen| Al Users)Snwendungsdatent GeviSoopst

More detailed information about all available actions can be found in the topic “Action doc-
umentation” (especially Viewer actions and Viewer notifications).

Please be aware of the fact that GSCView is working in an asynchronous mode. If a custom
application sends an action, that depends on the result of the previous sent action there may
be the need for inserting a pause time before sending the second action (e.g. send action
“Viewer connect live”, wait one second, send action “Viewer print picture”). GSCView does
not have an input queue for remote control actions.

Supported development platforms

The SDK is designed and tested to be used with the following development environments:

CodeGear C++ Builder6 ©

CodeGear C++ Builder 2009 ©

CodeGear Delphi 7©

CodeGear Delphi 2005 ©

CodeGear Delphi 2009 ©

Microsoft Visual Studio 2005, C++, MFC ©

Microsoft Visual Studio 2008, C++, MFC ©

Microsoft Visual Studio 2005, C++/CLI ©

Microsoft .NET © (wrapper classes are contained in the “Examples” folder)

Guidelines and hints

Introduction

It is recommended to be familiar with the GeViScope system and the possibilities of modern
video surveillance systems and video management systems. Before starting programming
your custom GeViScope client you should know basics of video formats, video com-
pression, GeViScope events, GeViScope actions and the principles of a client - server net-
work communication.

The following sections support you with some suggestions and hints about using the SDK
interfaces.

General hints

If your application needs to listen to events and actions please use the application PLCSim-
ulator.exe that you can find on Your GeViScope device. This software allows you to start
actions and events which might be used by your program.

You should work and do some tests with a real GeViScope device or with the virtual test
environment belonging to the SDK. Create some events and actions, start them with
PLCSimulator.exe.

Starting the setup software GSCSetup.exe with the command line parameter /utilities will
offer you the possibility to open DBITest to discover the database structure and to evaluate
and test select statements against the database. Additionally this tool offers you the pos-
sibility to start the registry editor to evaluate the internal structure of the GeViScope setup.

Make sure to delete all objects that are created inside of DLLs. The objects
themselves should always offer a Destroy() or Free() method for that.

Callback functions, which are called out of the SDK DLLs, are called from threads, which

were created inside the DLLs. Variables and pointers that are passed as arguments of the
callback may not be used outside the callback context. They are only valid for the duration
of the callback call.

Structures that are used as arguments for SDK functions should always be initialized by the
function memset(). After setting all the structure elements to zero, the size or structsize ele-
ment has to be initialized with the sizeof() function.

MPEG-2 files that were created by SDK functions can possibly not be played with the win-
dows media player. The reason is a missing MPEG-2 decoder. We recommend using DVD
player software like PowerDVD or the VCL Media Player software.

Working with handles and instances

Integral part of the SDK are units that give the user a comfortable access to the plain func-
tions of the DLL, e.g. GSCDBI.h/.cpp/.pas. In these units classes encapsulate access to
instances of objects which are created inside the DLL. To have access from outside the
DLL (custom application) to the inside residing instances, handles are used. The units have
to be added to the project respectively to the solution to avoid linker errors.

After work with instances is finished, the instances have to be deleted by calling their des-
troy() or free() method. Otherwise there will be memory leaks left.

Using the plain exported functions of the DLL is not recommended. To get access to full
functionality you should use the units instead (pas files or h/cpp files).

The following example (in pseudo code) should illustrate the above facts:

// define a handle to a server object
HGscServer MyServer;

/I create a server object instance inside the DLL and
/l get ahandle to it
MyServer = DBICreateRemoteserver();

/I work with the object instance with the help of the handle
MyServer->Connect();

/I define a handle to a PLC object
HGscPLC PLC;

/I create a PLC object instance inside the DLL and
/l get ahandle to it
PLC = MyServer.CreatePLC();

/I work with the object instance with the help of the handle
PLC->OpenPushCallback(...);

/l destroy PLC object
PLC->Destroy();

/] destroy server object
MyServer->Destroy();

Interaction between DBI and MediaPlayer

The DBl interface gives access to GeViScope server functionality. After creating an
instance with the function DBICreateRemoteserver() a connection to the server can be
established by calling the method Connect() of the server object instance.

The following methods of a server object instance can be called to get access to different
kinds of functions (not a complete list):

CreateDataSet(), Fetch data from server database

CreateDataPacket()

CreateLiveStream() Fetch live data from server

CreateRegistry() Fetch setup data from server (media channel information, event
information, ...)

CreatePLC() Listen to, create and send actions

The example (in pseudo code) of the previous chapter should illustrate the above facts.

The MediaPlayer interface offers simple to use objects to display live and recorded video in
windows controls. A viewer object instance needs to be created by calling
GMPCreateViewer(). The viewer needs a handle to a windows control and a handle to a
server object instance. It handles fetching data, decompressing data and displaying video in
the linked windows control by itself.

The following methods of a viewer object instance can be called to get access to different
kinds of functions (not a complete list):

ConnectDB() Fetch video data from the database and display it in any play mode required.
Filter and search criteria can optionally be defined.

SetPlayMode Display the next available event pictures

(pmPlayNextEvent)

The following example (in pseudo code) shows how to create a viewer and use it after-
wards:

// define a handle to a viewer object
HGscViewer MyViewer;

/I create a viewer object instance inside the DLL and
// get a handle to it
MyViewer = GMPCreateViewer(WindowHandle, ...);

/I define a structure with data needed to link

/l the viewer to a media channel in the server
TMPConnectData MyViewerConnectData;

/I handle to the server object instance
MyViewerConnectData.Connection = MyServer;
MyViewerConnectData.ServerType = ctGSCServer;
MyViewerConnectData.MediaType = mtServer;
/11D of the media channel that should be displayed
MyViewerConnectData.MediaChID = ...

/l'link the viewer to a media channel and display live data
MyViewer->ConnectDB(MyViewerConnectData, pmPlayStream, ...);

// destroy viewer object
MyViewer->Destroy();

Beside the viewer object class there is another class in the MediaPlayer interface: The off-
screen viewer object class. If you want to decompress media, which should not be

displayed with the help of the viewer object, you can use the offscreen viewer object. An
instance can be created with the function GMPCreateOffscreenViewer(). The offscreen
viewer object instance provides nearly the same functionality as the viewer object class
does. The video footage is not rendered in a window, it is decompressed in a special Decom-
pBuffer object instance. After the decompression is done inside the offscreen viewer, the
hosting application can be notified with the help of a callback function. Inside the callback
the decompressed image can be accessed.

The DecompBuffer class encapsulates special functions for effective decompressing. So it
is recommend to use it. Creating an instance of the buffer can be reached by calling the func-
tion GMPCreateDecompBuffer(). The instance can be used for as many decompressions

as needed. The method GetBufPointer() gives access to the raw picture data inside the buf-
fer.

Here is a short example (in pseudo code) how to work with an offscreen viewer object:

/I define a handle to a DecompBuffer object
HGscDecompBuffer MyDecompBuffer;

/Il create a DecompBuffer object instance inside the DLL and
// get a handle to it
MyDecompBuffer = GMPCreateDecompBuffer();

/I define a handle to a offscreen viewer object
HGscViewer MyOffscreenViewer;

/I create an offscreen viewer object instance inside the DLL and
// get a handle to it
MyOffscreenViewer = GMPCreateOffscreenViewer(MyDecompBuffer);

/I set callback of the offscreen viewer object
MyOffscreenViewer.SetNewOffscreenlmageCallBack(NewOff-
screenlmageCallback);

/l define a structure with data needed to link

/ the offscreen viewer to a media channel in the server
TMPConnectData MyOffscreenViewerConnectData;

/I handle to the server object instance
MyOffscreenViewerConnectData.Connection = MyServer;
MyOffscreenViewerConnectData.ServerType = ctGSCServer;
MyOffscreenViewerConnectData.MediaType = mtServer;
/I'|D of the media channel that should be decompressed
MyOffscreenViewerConnectData.MediaChID = ...

/l'link the offscreen viewer to a media channel and decompress live data
MyOffscreenViewer->ConnectDB(MyOffscreenViewerConnectData, pmPlayStream,

)

/I destroy offscreen viewer object
MyOffscreenViewer->Destroy();

/I destroy DecompBuffer object

MyDecompBuffer->Destroy();

/I callback function, that is called after images have been decompressed

/I get a raw pointer to the picture in the DecompBuffer
/I object
MyDecompBuffer->GetBufPointer(BufferPointer, ...);

/I copy the picture into a windows bitmap resource
/ for example
SetDIBits(..., BitmapHandle, ..., BufferPointer, ..., DIB_RGB_COLORS);

Enumeration of setup data

GeViScope Server resources can be enumerated by custom applications. The setup object,
which can be instantiated by calling the server method CreateRegistry(), offers functionality
for this.

Enumeration of resources normally is done in four steps:

1. Define an array of type GSCSetupReadRequest with the only element “/”. This
causes the method ReadNodes() to transfer the whole setup from the server to the
custom application.

2. Call the method ReadNodes() of the setup object to get the whole setup from the
server.

3. Call one of the Get...() methods of the setup object to get an array of GUIDs rep-
resenting the list of resources. There are different Get...() methods, e. g. GetMe-
diaChannels() or GetEvents().

4. Usethe GUID array to receive the resources data by calling Get...Settings() meth-
ods, e. g. GetMediaChannelSettings() or GetEventSettings().

Here is an example (in pseudo code), that shows how to enumerate the media channels:

/I connect to the server
MyServer->Connect();

// define a handle to a setup object
HGscRegistry MySetup;

/I create a setup object instance inside the DLL and
/I get a handle to it
MySetup = MyServer->CreateRegistry();

// define a array for the setup read request
GscSetupReadRequest SetupReadRequest[1];
SetupReadRequest[0].NodeName ="/";

/I read the setup data from the server
MySetup->ReadNodes(&SetupReadRequest, ...);

// define a GUID array for the GUIDs of the
/Il existing media channels
GuidDynArray MediaChannels;

Il get the GUID array out of the setup data
My Setup->GetMediaChannels(MediaChannels);

/I get the data of each single media channel
for each MediaChannelGUID in MediaChannels
My Setup->GetMediaChannelSettings(MediaChannelGUID,
MediaChannellD,
GlobalNumber,

o)

// destroy setup object
MySetup->Destroy();

/l destroy server object
MyServer->Destroy();

Please note that especially the media channels can be enumerated by using the global func-
tion GMPQueryMediaChannelList() of the MediaPlayer interface as well.

PLC, actions and events

The PLC (Prcess Logic Control) object supports you with functionality for handling noti-
fications, actions and events. The method CreatePLC() of the server object class creates a
handle to a PLC object inside the DBI DLL.

The following methods of a PLC object instance can be called to get access to different
kinds of functions (not a complete list):

SendAction() Send an action to the connected server

StartEvent() Start an event of the connected server

SubscribeActions() Subscribe a list of actions that should be notified by a registered callback
function

OpenPushCallback Register a callback function, that is called if an notification arrives or a

0 event starts/stops or if one of the subscribed actions arrives

Toreceive Notifications and actions a callback function can be registered with the method
OpenPushCallback(). After receiving an action, the action should be decoded and dis-
patched by the an instance of the class GSCActionDispatcher. The action dispatcher gives
you a simple way to react on specific actions. Here is a short example (in pseudo code):

/I initialization code:

/I connect to the server
MyServer->Connect();

// define a handle to a PLC object
HGSCPLC PLC;

/I create a PLC object instance inside the DLL and
/I get a handle to it
PLC = MyServer.CreatePLC();

/I'link your callback function for a custom action

/I to the action dispatcher, so that the callback function

/'is called automatically if a cutsom action arrives
ActionDispatcher->OnCustomAction = this->MyCustomActionHandler;

/I register a callback function for notifications,

/[events and actions (this callback function dispatches
/I all received actions with the help of the

/I GSCActionDispatcher)
PLC->OpenPushCallback(...);

/I destroy PLC object
PLC->Destroy();

/I destroy server object
MyServer->Destroy();

/I callback function for all notifications, events and
// subscribed actions:

/l dispatch the received action to the linked
/I callback functions
ActionDispatcher->Dispatch(ActionHandle);

Media channel IDs

The existing media channels can be displayed by the viewer objects of the MediaPlayer
interface. Normally this is done with the method ConnectDB(). This method needs the

media channel ID to identify the media channel (camera) that should be displayed.

The media channel IDs are generated automatically by the GeViScope server. Every cre-
ated media channel gets an ID that is always unique. So if you remove media channels from
the setup and add them again, they will sure receive some new IDs.

For that reason media channels should not be accessed by constant IDs. It is recommend
using global numbers instead, because they can be changed in the setup. To find the fitting
media channel ID for a given global number, the media channels should be enumerated from
the server setup. Please refer to chapter “Enumeration of setup data” in this document to
see how this is done.

There is a similar difficulty with events, digital inputs and outputs. Events don’t have global
numbers. Here the event name should be used instead.

Handling connection collapses

The callback OpenPushCallback() of the PLC object enables to listen to different kinds of
notifications from the PLC object. One is the “plcnPushCallbackLost” notification. It is fired
if a connection is internally detected as collapsed. As a reaction on this event you should
destroy or free all objects that were created inside the DLLs and start a phase of reconnect
tries. The reconnect tries should start every 30 seconds for example. Additionally your
application can listen to UDP broadcasts that are sent by the GeViScope server. After your
application received this broadcast it can directly try to reconnect to the server. Please be
aware of the fact, that broadcasts only work in LAN —routers normally block broadcasts.

Using MediaPlayer with GeViScope and MULTISCORPE Il

servers

Generally the MediaPlayer interface can be used with GeViScope as well as MULTISCOPE
[l servers. To link the server connection to the viewer object, the connection data structure
has to be defined. The type of the structure is “TMPConnectData”. The element “Server-
Type” identifies the kind of server whose media should be displayed in the viewer.

Please have a look on the example (in pseudo code) in the chapter “Interaction between DBI
and MediaPlayer” in this document.

For creating different kind of connections, different DLLs have to be used. For GeViScope
the DLL “GSCDBI.DLL” and for MULTISCOPE lll the DLL “MscDBI.DLL" has to be
included in the project or solution of the custom application. They can coexist.

Handling a connection to a MULTISCORPE Il server is similar to GeViScope. Details can be
found in the MULTISCOPE 11l SDK documentation.

Using the SDK with .NET

To make the usage of the native Win32 DLLs easier in .NET languages like C# or VB.NET,
the SDK contains some wrapper assemblies around the plain SDK DLLs.

C#, VB.NET, ...

Exception wrapper DBI wrapper Actions wrapper MediaPlayer wrapper
GacExcaptionsMET_2_0.dll GscDBINET_2_0.d GacActionsMNET 2 0.dll GacMediaPlayerNET_2 0.dll
GscExceptionsNET_4_0.dll GscDBINET_4_0.dil GscActionsNET 4_0.dil [|GscMediaPlayerNET 4_0.di

GschActions.OLL GscMediaPlayer.DLL

GscDBI.DLL

These wrapper assemblies are developed in C++/CLI and published with the SDK. The
assemblies can be found in the GeViScope SDK binary folder “GeViScopeSDK\BIN”.

The SDK provides wrapper assemblies for the .NET-Frameworks versions 2.0 and 4.0
which are named as follows:

.NET-Framework 2.0

» GscExceptionsNET_2_0.dll
* GscActionsNET_2_0.dll

» GscMediaPlayerNET_2_0.dll
* GscDBINET_2_0.dll

.NET-Framework 4.0

» GscExceptionsNET_4_0.dll
* GscActionsNET_4_0.dll

» GscMediaPlayerNET_4_0.dll
* GscDBINET_4_0.dll

These wrapper assemblies can be used together with our native SDK DLLs (GscAc-
tions.DLL, GscDBI.DLL, GscHelper.DLL, GscMediaPlayer.DLL, MscDBI.DLL) to create
custom applications under any .NET language on a windows platform. The assemblies
need to be referenced by the .NET project and all the files (assemblies and native DLLs)
have to reside in the application folder.

J Solution "VS2008MET_ActionsAndEvents' (1 project)
= (5] VS2008NET_ActionsAndEvents
E‘ =d| Properties
o [References
. e .3 GscActionsMET 2. 0
-+ GscDBINET 2.0
-« GscExceptionsMET_2 0
-« GscMediaPlayerNET_2_0
freees A Swstem

Deploying a custom solution based on the .NET wrapper
To successfully deploy a custom application that uses the .NET wrapper contained in the
SDK, the following prerequisites have to be fulfilled:

a) Microsoft Visual C++ Redistributable Package has to be
installed

The wrapper assemblies are developed in C++/CLI. So for executing them on a none devel-
opment machine, the Microsoft Visual C++ Redistributable Package is needed. This pack-
age exists in a debug or in a release version. On productive machines the release version
needs to be installed.

For applications using the .NET-Framework 2.0 the Visual C++ 2008 Redistributable Pack-
age is needed. In case that the application is developed using the .NET-Framework 4.0 you
need to install the Visual C++ 2010 Redistributable Package.

b) .NET Framework Version 2.0 SP 1 or newer has to be
installed

If updating the .NET Framework on a GEUTEBRUCK device (GeViScope or re_porter)
fails, a special Microsoft tool Windows Installer CleanUp Utility (MSICUUZ2.exe) can
improve the situation. After executing this tool, updating the Framework should be possible.

c) Wrapper assemblies AND native SDK DLLs are needed

Beside the custom application also the wrapper assemblies and the native SDK DLLs (lis-
ted above) are needed in the same folder as in which the custom application resides.

If the application uses the .NET-Framework 4.0 you need to reference the GeViScope wrap-
per DLLs with the extension _4 0 otherwise please use the wrapper assemblies with the
extension _2 0 (see above).

GeViScope REGISTRY
Using the GscRegistry with .NET

Introduction

By using the GeViScope registry (GSCREGISTRY) it is possible to modify GeViScope/Re_
porter settings programmatically. The GscRegistry is a proprietary registry format
developed by GEUTEBRUCK. This registry format is similar to the Microsoft Windows
registry.

All needed GeViScope server settings are stored in the GscRegistry database. The creation
of own registry databases based on files is also possible.

The GEUTEBRUCK GEVISCOPE SDK provides several classes and methods to allow a
comfortable access to the GscRegistry.

Requirements
The following requirements are needed to create a .NET application that uses the GscRe-
gistry functionality:

* NET-Framework 2.0 SP1 or newer
- .NET-Framework 2.0 SP1 Wrapper-Assemblies:
GscExceptionsNET_2_0.dll
GscDBINET_2_0.dll
- .NET-Framework 4.0 Wrapper-Assemblies:
GscExceptionsNET_4 0.dIl
GscDBINET_4_0.dll
* Native Win32-DLLs, used by the .NET-Wrapper:
- GscActions.dll
- GscDBI.dIl
- GscMediaPlayer.dll
- GscHelper.dll
-MscDBI.dIl
* Microsoft Visual C++ Redistributable Package

Using the registry
In the following, the usage of the GscRegistry with .NET is explained in detail. It discusses
the following steps:

o Open the registry

o Read values out of nodes

o Createanode

o Add values to anode

o Save the registry

All necessary classes and methods for using the GscRegistry are available in the GscDBI
namespace. To include this namespace the following using-statement is needed:

using GEUTEBRUECK.GeViScope.Wrapper.DBI;

Open the registry

To read or modify GeViScope/Re_porter settings it is necessary to establish a connection
to the preferred GeViScope/Re_porter server before. After this is done you need to create a
new object of the class GscRegistry and initialize it by using the CreateRegistry() method
which is contained in the GscServer object.

C#-Code: Open the registry
if (GscServer != null)

// create an object instance of the server registry
GscRegistry = GscServer.CreateRegistry();
if (GscRegistry != null)
{
// define an array for the setup read request (registry node paths
to read)

[] ReadRequests = new
(117
ReadRequests[0] = new ("/", 0);
// read the nodes (setup data) out of the server registry
GscRegistry.ReadNodes (ReadRequests) ;

}

The method ReadNodes() of the GscRegistry object expects an array of the type GscRe-
gistryReadRequest which contains all node paths to be read out of the registry. In the
source code snippet above, the array simply contains one element which represents the
root node (“/”). By reading the root node the entire registry will be read out.

Read values of nodes
The following source code snippet shows how to read values out of nodes:

C#-Code: Read values out of nodes

if (GscRegistry != null)
{
RegNode = GscRegistry.FindNode ("/System/MediaChannels/") ;

for (int 1 = 0; i < RegNode.SubNodeCount; ++1i)

{
L

// find the GeViScope registry node of the parent node by means of
the index
SubRegNode = RegNode.SubNodeByIndex (i) ;
RegVariant = new GscRegVariant();

// Get the value "Name" out of the sub registry type and store the
value and

// value type in the GscRegVariant class
SubRegNode.GetValueInfoByName ("Name", ref RegVariant);

if (RegVariant != null && RegVariant.ValueType ==
.ntWideString)
Console.WritelLine (RegVariant.Value.WideStringValue) ;

To read a specific node out of the registry the GscRegistry class provides the method
FindNode().

For that the path to the preferred node has to be committed to the method and it you will get
back an object of the type of GscRegNode. This object contains all sub nodes and values of
the found node.

To access a sub node of the parent node the method SubNodeByIndex() provided by the
class GscRegNode can be used or use the SubNodeByName() method if the name of the
sub node is already known.

The method GetValuelnfoByName() can be used to access a specific value of a node. This
method expects the name of the specific value as well as a reference to an object of type of
GscRegVariant. The GscRegVariant object will be filled with the type of the value
(ValueType) as well as the value itself (Value).

Create a node

To create a new node in a parent node the method CreateSubNode() which is provided by
the class GscRegNode needs to be called. The method expects the name of the new node.

C#-Code: Create a node

if (_ GscRegistry !=null)

{
RegNode = _GscRegistry.FindNode("/System/MediaChannels/0000");
/I create a new sub node in NodePath
if (RegNode != null)
RegNode.CreateSubNode("NewNode");
}

Add values to a node

There are several methods in the class GscRegNode to add values to a node. Depending on
the type of the value it is needed to call the right method for writing this type into the registry.
For example if you would like to write an Int32 value into the registry you need to use the
method Writelnt32().

C#-Code: Add values to node

public void AddValue(string NodePath, string ValueName, ValueType,
object Value)

{
RegNode = _GscRegistry.FindNode(NodePath);

if (RegNode != null)

{
switch (ValueType)
{
case .ntWideString:
RegNode.WriteWideString(ValueName, Value.ToString());
break;
}
case .ntInt32:
{
RegNode.Writelnt32(ValueName, .Tolnt32(Value));
break;
}
}
}

Save the registry

After the GscRegistry object was modified (e.g. new nodes/new values), the server also
needs to know about the changes made. For this the GscRegistry class provides the
method WriteNodes().

C#-Code: Add values to node

/I define an array for the setup write request

[1 WriteRequests = new [11;
WriteRequests[0] = new ("r", 0y
GscRegistry.WriteNodes(WriteRequests, true);

The WriteNodes() method expects an array containing objects of the type of GscRe-
gistryWriteRequest. Each GscRegistryWriteRequest contains a path to a node that has to
be saved.

NOTICE

It is recommended to only add one element to this array which contains the root path (*/”).
This results in saving the entire registry structure.

Structure of GSCRegistry

The GEVISCOPE SDK offers two possibilities to browse the structure of the GscRegistry.
By means of the application GscRegEdit that is delivered with the SDK, it is possible to
browse or modify the registry similar to Microsoft’'s Windows registry.

In addition to GscRegEdit you can also use the registry editor which is integrated in
GSCSetup. To activate this feature the key combination STRG+ALT+U needs to be actu-
ated. The entry Registry editorin the section Ultilities in the navigation bar on the left will
now be shown.

Examples
To get a better idea of how to use the GscRegistry, the GEVISCOPE SDK provides further
.NET example applications.

The examples can be found in the folder ,Examples* folder in the GeViScopeSDK main
folder:

e C:\Program Files (x86)\GeViScopeSDK\Examples\VS2008NET\VS2008NET _
GscRegEdit
Simple registry editor, GUI application (Visual Studio 2008)

e C:\Program Files (x86)\GeViScopeSDK\Examples\VS2008NET\VS2010NET _
GscRegEdit
Simple registry editor, GUI application (Visual Studio 2010)

e C:\Program Files (x86)\GeViScopeSDK\Examples\VS2008NET\VS2008NET _
GscRegistryBasics
Console application (Visual Studio 2008)

e C:\Program Files (x86)\GeViScopeSDK\Examples\VS2010NET\VS2010NET _
GscRegistryBasics
Console application (Visual Studio 2010)

GSCView data filter plugins

Introduction

GSCView offers the possibility to integrate customized data filter dialogs. Data filter dialogs
are used to search and filter video footage by additional event data. They can be customized
to the different business environments in which GeViScope is used.

g8 Event List for server <Local>

S50 Filler events

I Wi ;-]
Media channels ¥
Ewent types %
Data Flter v R

D7 _Gschiewatariter « =3

Custom action filter
INT parameter

STAING parameler Hels vanild

3 Apply fikes

7 Clear data

M Deactivane fikee | O Agply fiter 3¢ Cloar Flse # show Fiter diakog, .,

Expardd al Expand first bevel Coflapsaal | |y Sava..,

-
Slat e - Ewernl rame
=i oy 03.02, 7009 O7: 16:08 HeloWoridEvent
7 W7 Media dhannels
=[] 03022009 0711608 Custom action
THT paramete 4711
STRING paramstsr Helo veorkd
= oy 03.02.2009 O7;16:28 HeloWiorldE vere
5 w3 Media channsls
= [03.02.2009 07:16:28 Custom action
T parametes iz
STRIMNG pararmester Hebo veorkd
= ol 03.02,2009 O7:16:79 HelloWsorldEvert:
¥ 7 Meda channets
= (&) 03.02.2009 07:16:39 Custom ackion
INT par At 4713
STRING paramster Helo workd
£
_dampoise | [Latsampours Bl |

l '-iua'rm\'n ﬁ.t'u 'n: l-cuve adilitl.:;al';:latu CrETHER OF nmu orey

= Pint..,

Slop tme

S
03,02, 2009 071 16

03,082, 2009 07: 16

03,02, 2009 07: 16

4]
[+]

(4]

The following sections support you with some suggestions and hints about creating cus-

tomized data filter plugins.

General hints

Custom data filters are hosted in flat windows 32Bit dynamic link libraries. Differing from nor-
mal DLLs the data filter DLLs have the extension “.GPI”. All data filter DLLs existing in the
same folder as GSCView are integrated in GSCView automatically.

Data Filter

oA

D7 _ascviewDataFilker

a5

Mot used

D7 GscWiewDataFilker

D7 _simpleGsciiswDataFilker
Geviscope action filker

ATM transactions
GeViScope generic

The customized data filter DLL interface
Each DLL has to export the function GSCPIluginRegisterSearchFilter() that is called by

GSCView to use the customized dialogs. The exact definition of this function and some
additional type definitions can be found in the unit “GSCGPIFilter.pas/.h”.

Inside the function GSCPIuginRegisterSearchFilter() one or even more data filter dialogs

have to be registered by calling the function Callbacks.RegisterFilter().

The following example (in pseudo code) shows how this is done:

if(Callbacks.RegisterFilter == NULL)

return FALSE;
TPIuginFilterDefinition def;

def = SimpleFilter. GetFilterDefinition();
Callbacks.RegisterFilter(Callbacks.HostHandle, def);

The structure TPluginFilterDefinition defines some informational data and all the callback
functions needed for a single dialog. GSCView uses the definition to call the different call-
back functions during its execution.

InitFilter() Can be used to initialize the data filter dialog. To integrate the dialog in
GSCView, the function has to return true.

ShowfFilter() Inside this function the dialog should be displayed as a stand-alone
(modal) dialog. GSCView calls the function after the user activates the a
button.

DeinitFilter() Can be used to deinitialize the data filter dialog. The function has to return
true, even if itis not used.

GetFilterGuid() The function should provide a global unique identifier (GUID) that is used

inside GSCView to identify the dialog. The GUID can be defined as a static
constant value.

As an alternative to the modal display of the data filter dialog, the dialog can be displayed
nested in the GSCView main window or GSCView event list. But at the moment this feature
is only supported by custom filter dialogs created with Borland Delphi ©.

Data Filter W (n

D7_GscWiewDataFiler =

Custom action filter

IMT parameter
STRIMG parameter

CH Anply filker

> Clear data

To achieve the nested display, the additional callback functions of the structure TPIu-
ginFilterDefinition have to be implemented. The Borland Delphi © example
“GSCViewDataFilter demonstrates the details.

Creating the filter criteria
If the custom data filter is applied, GSCView does a query against the tables “events” and
“eventdata” of the internal GeViScope database. For this query afilter criteria is needed. The

custom data filter delivers the criteria and gives it back to GSCView in the ShowFilter() call-
back function.

To build up meaningful filter criteria some background knowledge of the GeViScope data-
base is needed.

The table “events” contains all the events recorded in the database (only event information,
not the samples; the samples are linked to the events).

The table “eventdata” contains additional data belonging to the events. Inside the table the
different parameters of actions are saved. If for example an event is started by the Cus-
tomAction(4711, “Hello world”), the value 4711 is saved in the row “Int64_A” and the value
“Hello world” is saved in the row “String_A”. Because the event is started by a Cus-
tomAction, the value 8 is saved in the row “EventDataKind”. Each action has an individual
mapping of action parameters to rows in the table “eventdata”.

For different business environments special actions can be created by GEUTEBRUCK.
There already exist some special actions like:

ATMTransaction() Automated teller machines
ACSAccessGranted() Access control systems
SafebagOpen() Cash management systems
POSData() Point of sale systems

The action internally defines the mapping of action parameters to rows in the table “event-
data”. The code of an action (for a CustomAction the code is 8) is stored in the row
“‘EventDataKind’. The codes of actions are listed in the action reference documentation
“GSCActionsReference_EN.pdf”.

To evaluate the mapping of action parameters to database rows, GSCSetup can be used.
By pressing STRG+ALT+U in GSCSetup the special utility “DBI test” gets available.

Utilities

»

ﬁRegistry Editar

= 7 DBI test

With “DBI test” the structure and content of the GeViScope database can be analyzed. The
following SQL queries can be helpful:

select * from events Fetches records from the table “events”
select * from eventdata Fetches records from the table “eventdata”
select * from samples Fetches records from the table “samples”

The following table should demonstrate how to build up filter criteria depending on para-
meters given in the custom data filter dialog (here the CustomAction() is used to start the
events):

Action

para- Fil-

meter terCriteria.SQLstatement
STRING

Nothing Nothing EventData.EventDataKind = 8 |select * from EventData left join Events on
EventData.EventID = Events.EventID with
EventData.EventDataKind = 8

Nothing Hello EventData.EventString_A = |select * from EventData left join Events on
world "Hello world" and EventData.EventID = Events.EventID with
EventData.EventDataKind = 8 |EventData.EventString_A = "Hello world"

and EventData.EventDataKind = 8

4711 Nothing EventData.EventInt64_A = select * from EventData left join Events on
4711 and EventData.EventID = Events.EventID with
EventData.EventDataKind = 8 | EventData.EventIint64_A = 4711 and
EventData.EventDataKind = 8

SQL query

4711 Hello EventData.EventInt64_A = select * from EventData left join Events on
world 4711 and EventData.EventID = Events.EventID with
EventData.EventString_A = |EventData.EventIint64_A = 4711 and
"Hello world" and EventData.EventString_A = "Hello world"

EventData.EventDataKind = 8 and EventData.EventDataKind = 8

Nothing Hello* EventData.EventString_A = |select * from EventData left join Events on
"Hello*" and EventData.EventID = Events.EventID with
EventData.EventDataKind = 8 EventData.EventDataKind = 8 where
EventData.EventString_A LIKE "Hello*"

During testing the custom data filter dialog in the GSCView event list a double click on the
status bar of the event list delivers the SQL query that is executed in the GeViScope server.

WO, TP LIS RS

Data Filker LA =[] 02.02.200907,16:28 Custom actian

|07 _GacwewDalaFiter v & THT parhmensy bl

Fiker 15 active ; select * from EventData kft jon Events on EventData. EvertlD = Everes.EverelD with EventData EventString_A =
“Hidlo workd” and EventData.EventDatakind = 3

INT parameher

STRING parametes m

©a Apoly e L | ¥

i e][]
Ewanitlusta filker is active: additiond daks entries are marked gray

iter s sckive

Examples overview

The examples overview is organized in two different views on all examples including the
GeViScopeSDK:

Examples grouped by programming tasks

Examples grouped by development platforms

Examples grouped by programming tasks

Connect to and disconnect from a GeViScope server

LiveStream (CodeGear C++ Builder 6 and 2009)

SimpleClient (CodeGear Delphi 7, 2005 and 2009)

GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
VS2008WPF_SimpleClient (Microsoft Visual Studio 2008, C#, WPF)
VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)
VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)
VS2010WPF_SimpleClient (Microsoft Visual Studio 2010, C#, WPF)

Enumerate existing media channels and event types from a
GeViScope server

LiveStream (CodeGear C++ Builder 6 and 2009)

SimpleClient (CodeGear Delphi 7, 2005 and 2009)

GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
VS2008NET_GscRegEdit (Microsoft Visual Studio 2008, C#)
VS2008NET_GscRegistryBasics (Microsoft Visual Studio 2008, C#)
VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
VS2010CPP_ConfigReader (Microsoft Visual Studio 2010, C++)
VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)
VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)
VS2010NET_GscRegEdit (Microsoft Visual Studio 2010, C#)
VS2010NET_GscRegistryBasics (Microsoft Visual Studio 2010, C#)
VS2010WPF_SimpleClient (Microsoft Visual Studio 2010, C#, WPF)

Display live and recorded media with the MediaPlayer inter-
face

LiveStream (CodeGear C++ Builder 6 and 2009)

SimpleClient (CodeGear Delphi 7, 2005 and 2009)

GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)
VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
VS2008WPF_SimpleClient (Microsoft Visual Studio 2008, C#, WPF)
VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)
VS2010WPF_SimpleClient (Microsoft Visual Studio 2010, C#, WPF)

Display recorded event media with the MediaPlayer interface

e VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
o VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
e VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)

Handling actions and PLC notifications

GSCActions (CodeGear C++ Builder 6 and 2009)

SimpleClient (CodeGear Delphi 7, 2005 and 2009)

ResourceStateMonitor (Delphi 2009)

VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
VS2010CPP_ControlBlockingFilters (Microsoft Visual Studio 2010, C++)
VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)

Handling events

LiveStream (CodeGear C++ Builder 6 and 2009)

GSCLiveStream (Microsoft Visual Studio 2005, C++, MFC)
VS2008CPP_ActionsAndEvents (Microsoft Visual Studio 2008, C++, MFC)
VS2008NET_ActionsAndEvents (Microsoft Visual Studio 2008, C#)
VS2010NET_ActionsAndEvents (Microsoft Visual Studio 2010, C#)

Creating backups
o Backup (CodeGear Delphi 7 and 2009)
Synchronized display of more than one media channels
o SynchPlayback (CodeGear C++ Builder 6 and 2009)
Custom draw in viewers of MediaPlayer interface
¢ SynchPlayback (CodeGear C++ Builder 6 and 2009)
e VS2008CPP_SimpleClient (Microsoft Visual Studio 2008, C++, MFC)

o VS2008NET_SimpleClient (Microsoft Visual Studio 2008, C#)
e VS2010NET_SimpleClient (Microsoft Visual Studio 2010, C#)

Export picture data

MediaPlayerExport (CodeGear Delphi 7 and 2009)

MPEGEXxport (CodeGear Delphi 7 and 2009)
VS2008NET_MediaPlayerExport (Microsoft Visual Studio 2008, C#)
VS2010NET_MediaPlayerExport (Microsoft Visual Studio 2010, C#)

Control PTZ cams
o Telecontrol (CodeGear Delphi 7 and 2009)

Fetch a user blocking list from the server
o UserBlockingList (CodeGear C++ Builder 6 and 2009)

Decompress live and recorded media with the offscreen
viewer

o OffscreenViewer (CodeGear Delphi 7 and 2009)
e VS2008CPP_OffscreenViewer (Microsoft Visual Studio 2008, C++, MFC)

e VS2008CPP_OffscreenViewer_Console (Microsoft Visual Studio 2008, C++)
o VS2008NET_OffscreenViewer (Microsoft Visual Studio 2008, C#)
e VS2010NET_OffscreenViewer (Microsoft Visual Studio 2010, C#)

Decompress raw live media by using the DBI

e VS2008CPP_RawLiveStreamDecompress (Microsoft Visual Studio 2008, C++,

MFC)
e VS2008CPP_RawLiveStreamDecompress_Console (Microsoft Visual Studio 2008,

C++)
Create a general service application

¢ WindowsService (CodeGear C++ Builder 6 and 2009)

e VS2008CPP_ServiceFrameworkDemo (Microsoft Visual Studio 2008, C++)
e VS2008NET_ServiceFrameworkDemo (Microsoft Visual Studio 2008, C#)

e VS2010NET_ServiceFrameworkDemo (Microsoft Visual Studio 2010, C#)

Full-duplex audio communication between GeViScope com-
ponents

The AudioBackChannel GeViScope Server Plugin (Visual Studio 2010) is an example for a
GeViScope Server plugin. It realizes a full-duplex audio communication between different
GeViScope components. The full scope of operation can be found in the document Audio
Back Channel (ABC) Plugin documentation.

Simulate media channels in GeViScope servers

The MCS (Media Channel Simulator) GeViScope Server Plugin (CodeGear C++ Builder 6)
is another example for a GeViScope Server plugin. It shows how to channel media data
inside the GeViScope system without using special video hardware. In addition the handling
of actions inside a server plugin is demonstrated. The full scope of operation can be found in
the document MCS Documentation.

Simulate a screen saver as a GeviScope Server Plugin

The DelphiScreenSaverPlugin GeViScope Server Plugin (CodeGear Delphi 7) is another
example to demonstrate channeling media into a GeViScope Server with the help of a
Server Plugin.

Provide a customized data filter dialog in GSCView

GSCView offers the possibility to integrate customized data filter dialogs. Data filter dialogs
are used to search and filter video footage by additional event data. They can be customized
to the different business environments in which GeViScope is used. Detailed information
can be found in the document GSCView data filter plugins.
The following examples demonstrate how to create customized data filter dialogs:

o SimpleGSCViewDataFilter (CodeGear Delphi 7 and 2009)

e GSCViewDataFilter (CodeGear Delphi 7 and 2009)

o VS2008CPP_SimpleGSCViewDataFilter (Microsoft Visual Studio 2008, C++, MFC)

Presenting GEUTEBRUCK Backup Files (GBF)

e VS2008CPP_SimpleGBFViewer (Microsoft Visual Studio 2008, C++, MFC)
o SimpleGBFViewer (CodeGear Delphi 2009)
o VS2008NET_SimpleGBFViewer (Microsoft Visual Studio 2008, C#)

Monitor the state of media channels (cameras)

o ResourceStateMonitor (CodeGear Delphi 2009)

Examples grouped by development platforms
CodeGear C++ Builder 6 and 2009 ©

e LiveStream
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Handling events
o GSCActions
Connect to and disconnect from a GeViScope server
Handling actions
e SynchPlayback
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Handling events
Synchronized display of more than one media channels
o UserBlockingList
Connect to and disconnect from a GeViScope server
Fetch a user blocking list from the server
e WindowsService
WindowsService (CodeGear C++ Builder 6 and 2009)

e The MCS(Media Channel Simulator) GeViScope Server Plugin is another example
for a GeViScope Server plugin. It shows how to channel media data inside the GeViS-
cope system without using special video hardware. In addition the handling of
actions inside a server plugin is demonstrated. The full scope of operation can be
found in the document M CS Documentation.

CodeGear Delphi 7, 2005 und 2009 ©

o SimpleClient
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface

e Backup
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Creating backups

o MediaPlayerExport
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Export picture data

o MPEGEXxport
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server

Export picture data
e Telecontrol
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Handling actions
Control PTZ cams
o OffscreenViewer
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Decompress live and recorded media
Custom draw
e The SimpleGSCViewDataFilter and GSCViewDataFilter example are examples for
customized data filter dialogs of GSCView. Detailed information can be found in the
document GSCView data filter plugins.
o SimpleGBFViewer (only Delphi 2009)
Open and close a GEUTEBRUCK Backup Files (GBF)
enumerate existing media channels in the GBF file
Display media with the MediaPlayer interface
o ResourceStateMonitor (only Delphi 2009)
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
monitor the state of media channels (cameras)
Handling actions

Microsoft Visual Studio 2005, C++, MFC ©

e GSCLiveStream
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Display live and recorded media with the MediaPlayer interface

Microsoft Visual Studio 2005, C++, CLI ©

e The VSIPCamPlugin GeViScope Server Plugin is an example to show how simple it
is to channel some pictures from an IP cam into a GeViScope server

Microsoft Visual Studio 2008, C++, MFC ©

e VS2008CPP_SimpleClient
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Custom draw

e VS2008CPP_OffscreenViewer
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Decompress live and recorded media
Custom draw

e VS2008CPP_ActionsAndEvents
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Handling actions

Handling events

Display recorded event media with the MediaPlayer interface
VS2008CPP_SimpleGBFViewer

Open and close a GEUTEBRUCK Backup Files (GBF)

enumerate existing media channels in the GBF file

Display media with the MediaPlayer interface
The VS2008CPP_SimpleGSCViewDataFilter example is an example for a cus-
tomized data filter dialog of GSCView. Detailed information can be found in the doc-
ument GSCView data filter plugins.
VS2008CPP_RawLiveStreamDecompress_Console

Receiving live streams by using the DBI

Decompressing frames by means of the decompressor object of the GscMe-

diaPlayer-DLL
VS2008CPP_OffscreenViewer_Console

Using the OffscreenViewer to receive a live stream in a console application

OffscreenViewer provides a decompressed image in a callback

Only the picture ID (PiclD) of the image will be displayed in the console
VS2008CPP_RawLiveStreamDecompress_Console

Receiving live streams by using the DBI

Decompressing frames by means of the decompressor object of the GscMe-

diaPlayer-DLL
VS2008CPP_OffscreenViewer_Console

Using the OffscreenViewer to receive a live stream in a console application

OffscreenViewer provides a decompressed image in a callback

Only the picture ID (PiclD) of the image will be displayed in the console

Microsoft ActiveX ©

GscViewer (ActiveX Control)

Encapsulating of GeViScope functionality into an ActiveX control
ActiveX DOTNETClient

Invocation of the GscViewer ActiveX control from C#
ActiveX_HTML_Page

Invocation of the GscViewer ActiveX control from inside a web page (html)
ActiveX_ VB6Client (deprecated)

Invocation of the GscViewer ActiveX control from inside a VB6 application
ActiveX_ VB6MultiClient (deprecated)

Invocation of several GscViewer ActiveX control from inside a VB6 application

Microsoft Visual Studio 2008, C# ©

VS2008NET_SimpleClient
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Custom draw

VS2008NET_ActionsAndEvents
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Handling actions
Handling events
Display recorded event media with the MediaPlayer interface

o VS2008NET_OffscreenViewer
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Decompress live and recorded media
Custom draw

e VS2008NET_RawDBDecompress
Fetching database records
Decompressing the fetched records as fast as possible

o VS2008NET_MediaPlayerExport
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Export picture data

e VS2008NET_SimpleGBFViewer
Open and close a GEUTEBRUCK Backup Files (GBF)
enumerate existing media channels in the GBF file
Display media with the MediaPlayer interface

e The VS2010NET_ServiceFrameworkDemo example
is an example for a general service application. Services based on the
GEUTEBRUCK
Service Framework behave like all GEUTEBRUCK product

e VS2008NET_GscRegEdit
Simple GeViScope registry editor
Connect to a GeViScope server
Modify GeViScope settings using the GeViScope registry
Export settings to GeViScope registry file format

e VS2008NET_GscRegistryBasics
Simple demonstration in using the GeViScope registry
Reading out media channels
Add a value to the GeViScope registry
Saving the GeViScope registry

Microsoft Visual Studio 2008, C#, WPF ©

e VS2008WPF_SimpleClient
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Display live and recorded media with the MediaPlayer interface

Microsoft Visual Studio 2010, C++

o VS2010CPP_ConfigReader
o VS2010CPP_ControlBlockingFilters

Microsoft Visual Studio 2010, C# ©

e VS2010NET_SimpleClient
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Display live and recorded media with the MediaPlayer interface
Custom draw
e VS2010NET_ActionsAndEvents
Connect to and disconnect from a GeViScope server
enumerate existing media channels and event types from a GeViScope server
Display live and recorded media with the MediaPlayer interface

Handling actions
Handling events
Display recorded event media with the MediaPlayer interface
o VS2010NET_OffscreenViewer
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Decompress live and recorded media
Custom draw
e VS2010NET_RawDBDecompress
Fetching database records
Decompressing the fetched records as fast as possible
o VS2010NET_MediaPlayerExport
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Export picture data
e VS2010NET_SimpleGBFViewer
Open and close a GEUTEBRUCK Backup Files (GBF)
enumerate existing media channels in the GBF file
Display media with the MediaPlayer interface
e The VS2010NET_ServiceFrameworkDemo
example is an example for a general service application. Services based on
the GEUTEBRUCK Service Framework behave like all GEUTEBRUCK
product services.
e VS2010NET_GscRegEdit
Simple GeViScope registry editor
Connect to a GeViScope server
Modify GeViScope settings using the GeViScope registry
Export settings to GeViScope registry file format
e VS2010NET_GscRegistryBasics
Simple demonstration in using the GeViScope registry
Reading out media channels
Add a value to the GeViScope registry
Saving the GeViScope registry

Microsoft Visual Studio 2010, C#, WPF ©

e VS2010WPF_SimpleClient
Connect to and disconnect from a GeViScope server
enumerate existing media channels from a GeViScope server
Display live and recorded media with the MediaPlayer interface

Action documentation

The following chapter contains a short overview about the existing GEUTEBRUCK actions
and there parameter descriptions.

ATM / ACS

ACS access denied

Action name:ACSAccessDenied(ACSName, ACSNo, Account, BancCode, CardNo,
TimeStamp, Reason)Action category: logical ACS access denied.

ACS ACSName |ACS name.
ACS no ACSNo ACS no.
account Account Account no.
bank code |BancCode |Bank code.

card no CardNo Card no.
time stamp | TimeStamp | Time stamp.
reason Reason Reason.

ACS access granted

Action name:ACSAccessGranted(ACSName, ACSNo, Account, BancCode, CardNo,
TimeStamp)Action category: logical
ACS access granted.

ACS ACSName |ACS name.
ACS no ACSNo ACS no.
account |Account |Account no.
bank code |BancCode |Bank code.
card no CardNo Card no.
time stamp | TimeStamp | Time stamp.

ACS raw answer

Action name:ACSRawAnswer(ACSName, TimeStamp, ACSData)Action category: logical
ACS raw answer.

ACS ACSName |ACS name.

time stamp | TimeStamp | Time stamp.
answer ACSData ACS answer.

ACS raw data

Action name:ACSRawData(ACSName, TimeStamp, ACSData)Action category: logical

ACS raw data.

ACS ACSName |ACS name.
time stamp | TimeStamp | Time stamp.
data ACSData ACS data.

ATM raw answer

Action name:ATMRawAnswer(ATMName, TimeStamp, ATMData)Action category: logical
ATM raw answer.

ATM ATMName |ATM name.
time stamp | TimeStamp | Time stamp.
ATMData

answer ATM answer.

ATM raw data

Action name:ATMRawData(ATMName, TimeStamp, ATMData)Action category: logical
ATM raw data.

ATM ATMName |ATM name.
time stamp | TimeStamp | Time stamp.
data ATMData |ATM data.

ATM transaction

Action name:ATMTransaction(ATMName, New Transaction, Photostep, ATMNo, Account,
BancCode, CardNo, TAN1, TAN2, TimeStamp1, TimeStamp2, Amount, Currency)Action

category: logical ATM transaction.

ATM

new transaction

photostep
ATM no
account
bank code
card no

tan 1

tan 2
timestamp 1
time stamp 2
amount
currency

ATMName

NewTransaction

Photostep
ATMNo
Account
BancCode
CardNo
TAN1

TAN2
TimeStamp 1
TimeStamp2
Amount
Currency

ATM name.

New transaction.

Photostep.
ATM no.
Account no.
Bank code.
Card no.

TAN 1.

TAN 2.

Time stamp 1.
Time stamp 2.
Amount.
Currency.

Audio control

All actions to control the audio streams, also all notifications about the state change of the
audio streams.

ABC connect
Action name:ABCConnect(Address)Action category: logical Connect audio back channel.

address |Address | Address of the remote server.

ABC disconnect
Action name:ABCDisconnect()Action category: logical Disconnect audio back channel.

ABC play file
Action name:ABCPlayFile(FilelD, FileName, AutoRepeat)Action category: logical Play file
on audio back channel.

file id FileID File ID.

file name|FileName |Name of the file.
repeat |AutoRepeat Repeat file automatically

Sensor audio alarm
Action name: SensorAudioAlarm(Channel)Action category: logical Audio alarm detected.

channel|Channel|Channel.

Backup actions

All actions for backup.

Abort all auto backups
Action name:AbortAllAutoBackups()Action category: logical Abort all auto backups.

Abort auto backup
Action name:AbortAutoBackup(Schedule)Action category: logical Abort auto backup.

schedule Schedule Schedule.
Auto backup capacity warning

Action name:AutoBackupCapacityMonitoringCapacityWarmning(Warning, Destination,
TotalCapacity, FreeCapacity, AllocatedBy Gbf, PercentFree, PercentAllocated, Per-

centAllocatedBy Gbf)Action category: logical Auto backup capacity monitoring: capacity

warning.

warning Warning
destination Destination

total capacity TotalCapacity
free capacity FreeCapacity
allocated by GBF AllocatedByGbf
percent free PercentFree
percent allocated PercentAllocated

Warning.
Destination.

Total capacity.
Free capacity.
Allocated by GBF.
Percent free.
Percent allocated.

percent allocated by GBF|PercentAllocatedByGbf Percent allocated by GBF.

Auto backup capacity file auto deleted

Action name:AutoBackupCapacityMonitoringFileAutoDeleted(Warning, Destination,
TotalCapacity, FreeCapacity, AllocatedByGbf, PercentFree, PercentAllocated, Per-
centAllocatedByGbf, FileSize, FileName)Action category: logical Auto backup capacity

monitoring: file auto deleted.

warning Warning
destination Destination

total capacity TotalCapacity
free capacity FreeCapacity
allocated by GBF AllocatedByGbf
percent free PercentFree
percent allocated PercentAllocated

Warning.
Destination.

Total capacity.
Free capacity.
Allocated by GBF.
Percent free.
Percent allocated.

percent allocated by GBF|PercentAllocatedByGbf|Percent allocated by GBF.

FileSize

FileName

file size
file name

File size.

File name.

Auto backup capacity out of disk space

Action name:AutoBackupCapacityMonitoringOutOfDiskSpace(Warning, Destination,
TotalCapacity, FreeCapacity, AllocatedBy Gbf, PercentFree, PercentAllocated, Per-
centAllocatedByGbf)Action category: logical Auto backup capacity monitoring: out of disk

space.

warning Warning
destination Destination

total capacity TotalCapacity
free capacity FreeCapacity
allocated by GBF AllocatedByGbf
percent free PercentFree
percent allocated PercentAllocated

Warning.
Destination.

Total capacity.
Free capacity.
Allocated by GBF.
Percent free.
Percent allocated.

percent allocated by GBF|PercentAllocatedByGbf Percent allocated by GBF.

Auto backup file done

Action name:AutoBackupFileDone(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, Operationindex, OperationStartTime, Source, Destination, FileS-
izeLimit, BandWidthLimit, FileIndex, FileName, FileSize)Action category: logical Auto
backup progress natification: file done.

schedule Schedule Schedule.

start time StartTime Start time, empty during event backup.
effective start time |EffectiveStartTime |Effective schedule start time.
operation count OperationCount Operation count.

timer start TimerStart Timer start.

operation index OperationIndex Operation index.

operation start time|OperationStartTime|Operation start time.

source Source Source.

destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit BandWidthLimit Band width limit.

fileindex FileIndex File index.

file name FileName File name.

file size FileSize File size.

Auto backup file progress

Action name:AutoBackupFileProgress(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, Operationindex, OperationStartTime, Source, Destination, FileS-
izeLimit, BandWidthLimit, FileIndex, FileName, FileSize)Action category: logical Auto
backup progress notification: file progress.

Parameter Function

schedule Schedule Schedule.

start time StartTime Start time, empty during event backup.
effective start time |EffectiveStartTime |Effective schedule start time.
operation count OperationCount Operation count.

timer start TimerStart Timer start.

operation index OperationIndex Operation index.

operation start time|OperationStartTime|Operation start time.

source Source Source.

destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit BandWidthLimit Band width limit.

file index FileIndex File index.

file name FileName File name.

file size FileSize File size.

Auto backup file started
Action name:AutoBackupFileStarted(Schedule, StartTime, EffectiveStartTime, Oper-
ationCount, TimerStart, Operationindex, OperationStartTime, Source, Destination,

FileSizeLimit, BandWidthLimit, FileIndex, FileName)Action category: logical Auto backup
progress notification: file started.

schedule Schedule Schedule.

start time StartTime Start time, empty during event backup.
effective start time |EffectiveStartTime |Effective schedule start time.
operation count OperationCount Operation count.

timer start TimerStart Timer start.

operation index OperationIndex Operation index.

operation start time OperationStartTime Operation start time.

source Source Source.

destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit BandWidthLimit Band width limit.

fileindex FileIndex File index.

file name FileName File name.

Auto backup operation done

Action name:AutoBackupQOperationDone(Schedule, StartTime, EffectiveStart Time, Oper-
ationCount, TimerStart, Operationindex, OperationStartTime, OperationStopTime, Source,
Destination, FileSizeLimit, BandWidthLimit)Action category: logical Auto backup progress
notification: operation done.

Parameter Function

schedule Schedule Schedule.

start time StartTime Start time, empty during event backup.
effective start time |EffectiveStartTime |Effective schedule start time.

operation count OperationCount Operation count.

timer start TimerStart Timer start.

operation index OperationIndex Operation index.

operation start time|OperationStartTime|Operation start time.
operation stop time |OperationStopTime |Operation stop time.

source Source Source.
destination Destination Destination.
file size limit FileSizeLimit File size limit.

band width limit BandW idthLimit Band width limit.

Auto backup operation started

Action name:AutoBackupOperationStarted(Schedule, StartTime, EffectiveStart Time, Oper-
ationCount, TimerStart, Operationindex, OperationStartTime, Source, Destination, FileS-
izeLimit, BandWidthLimit)Action category: logical Auto backup progress notification:
operation started.

schedule Schedule Schedule.

start time StartTime Start time, empty during event backup.
effective start time |EffectiveStartTime |Effective schedule start time.

operation count OperationCount Operation count.

timer start TimerStart Timer start.

operation index OperationIndex Operation index.
operation start time OperationStartTime Operation start time.
source Source Source.

destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit BandWidthLimit Band width limit.

Auto backup schedule done

Action name:AutoBackupScheduleDone(Schedule, StartTime, EffectiveStartTime,
StopTime, OperationCount, TimerStart)Action category: logical Auto backup progress noti-
fication: schedule done.

Parameter Function
schedule Schedule Schedule.
start time StartTime Start time, empty during event backup.

effective start time| EffectiveStartTime | Effective schedule start time.
stop time StopTime Schedule stop time.
operation count OperationCount | Operation count.

timer start TimerStart Timer start.

Auto backup schedule started

Action name:AutoBackupScheduleStarted(Schedule, StartTime, EffectiveStart Time, Oper-
ationCount, TimerStart)Action category: logical Auto backup progress notification: schedule
started.

schedule Schedule Schedule.

start time StartTime Start time, empty during event backup.
effective start time|EffectiveStartTime | Effective schedule start time.

operation count OperationCount |Operation count.

timer start TimerStart Timer start.

Backup event
Action name:BackupEvent(EventID, TypelD, Destination, StartHintID, StopHintID, Sub-
folder)Action category: logical Backup event.

instance ID EventID Instance ID of the event.
event type TypelD Type of the event.
destination Destination Destination.

start hint ID StartHintID Optional start hint ID.
stop hint ID StopHintID Optional stop hint ID.

sub folder Subfolder Sub folder to backup event.

Event backup done
Action name:EventBackupDone(JobID, EventTypelD, EventID, Destination, FileSizeLimit,
BandWidthLimit, StartTime, StopTime)Action category: logical Event backup progress noti-

fication: backup done.

job ID JobID Backup job ID.

event type EventTypelD Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit |BandWidthLimit Band width limit.

start time StartTime Backup start time.

stop time StopTime Backup stop time.

Event backup file done

Action name:EventBackupFileDone(JoblD, EventTypelD, EventID, Destination, FileS-

izeLimit, BandWidthLimit, StartTime, Fil

elndex, FileName, FileSize)Action category:

logical Event backup progress notification: file done.

job ID JobID Backup job ID.

event type EventTypelD Type of the event.

instance ID EventID Instance ID of the event.
destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit |BandWidthLimit Band width limit.

start time StartTime Effective backup start time.
fileindex FileIndex File index.

file name FileName File name.

file size FileSize File size.

Event backup file progress

Action name: EventBackupFileProgress(JobID, EventTypelD, EventID, Destination, FileS-

izeLimit, BandWidthLimit, StartTime, FileIndex, FileName, FileSize)Action category:

logical Event backup progress notificatio

n: file progress.

job ID JobID Backup job ID.

event type EventTypelD Type of the event.

instance ID EventID Instance ID of the event.
destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit |BandWidthLimit Band width limit.

start time StartTime Effective backup start time.
file index FileIndex File index.

file name FileName File name.

file size FileSize File size.

Event backup file started

Action name:EventBackupFileStarted(JoblD, EventTypelD, EventID, Destination, FileS-
izeLimit, BandWidthLimit, StartTime, Filelndex, FileName)Action category: logical Event
backup progress natification: file started.

job ID JobID Backup job ID.

event type EventTypelD Type of the event.

instance ID EventID Instance ID of the event.
destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit |BandWidthLimit Band width limit.

start time StartTime Effective backup start time.
file index FileIndex File index.

file name FileName File name.

Event backup started

Action name:EventBackupStarted(JoblD, EventTypelD, EventID, Destination, FileS-
izeLimit, BandWidthLimit, StartTime)Action category: logical Event backup progress noti-
fication: backup started.

job ID JobID Backup job ID.

event type EventTypelD Type of the event.
instance ID EventID Instance ID of the event.
destination Destination Destination.

file size limit FileSizeLimit File size limit.

band width limit |BandWidthLimit Band width limit.

start time StartTime Backup start time.
Start auto backup

Action name: StartAutoBackup(Schedule)Action category: logical Start auto backup.

schedule Schedule Schedule.

Camera control

Actions to set and control PTZ/normal cameras.

Note: Which camera types are supported always depends on model and man-
ufacturer!

Auto focus off

Action name: AutoFocusOff(PTZ Head)

Action category: command

This action disables the auto-focus function of the camera.

PTZ head Camera Global camera number

Auto focus on

Action name:AutoFocusOn(PTZ Head)

Action category: command

This action enables the auto-focus function of the camera.

PTZ head Camera Global camera number

Camera backlight compensation mode

Action name: CameraBacklightCompensationMode(PTZ Head, mode)
Category: command

This action changes the backlight compensation of the camera.

PTZ head Camera Global camera number

mode Mode off=backlight compensation is turned off
on=backlight compensation is turned on

Camera clear preset text

Action name: CameraClearPresetText(PTZ Head, position)

Category: command

This action clears the text that was previously defined and assigned to a particular camera
position by the action “CameraSetPresetText” and displayed when the camera moves to
this position.

PTZ head Camera Global camera number

position Position Number of the camera position for which the
previously defined text (by the action “Cam-
eraSetPresetText”) has to be cleared.

Camera day/night mode

Action name: CameraDayNightMode(PTZ Head, mode)
Category: command

This action changes the day/night mode of the camera.

PTZ head Camera Global camera number

mode Mode day=day mode is activated
night=night mode is activated
auto=the camera changes automatically
between day and night mode

Camera light off

Action name: CameraLightOff(PTZ Head)
Category: command

This action turns the camera light off.

Parameter Function
PTZ head |Camera |GIobaI camera number

Camera light on

Action name: CameraLightOn(PTZ Head)

Category: command

This action turns the camera light on.

Parameter Function

PTZ head |Camera |GIobaI camera number

Camera manual iris off

Action name: CameraManuallrisOff(PTZ Head)

Category: command

This action disables the option to adjust the camera iris manually.

Parameter Function
PTZ head |Camera |Global camera number

Camera manual iris on

Action name: CameraManuallrisOn(PTZ Head)

Category: command

This action enables the option to adjust the camera iris manually.

Parameter Function
PTZ head |Camera |GIobaI camera number
Camera off

Action name: CameraOff(PTZ Head)
Category: command
This action turns off the camera.

Parameter Function
PTZ head Camera Global camera number
Camera on

Action name: CameraOn(PTZ Head)

Category: command

This action turns on the camera.

Parameter Function

PTZ head Camera Global camera number

Camera pump off

Action name: CameraPumpOff(PTZ Head)

Category: command

This action disables the pump of the camera.

Parameter Function

PTZ head Camera Global camera number

Camera pump on

Action name: CameraPumpOn(PTZ Head)
Category: command

This action enables the pump of the camera.

PTZ head Camera Global camera number

Camera RAW output

Action name: CameraRAWOutput(PTZ Head, output)
Category: command

This action sends a raw string (parameter output) to the camera.

PTZ head Camera Global camera number

output Output raw string
The following escape sequences are sup-
ported:
\W\a, b, f,n, r,t,v=>\a,b,f,nrtv
\\\=>\\
\\'=>\'
\=> 0\
\Xhh or \xhh => ASCII-character

Camera select char mode
Forinternal use only

Camera set preset text
Action name: CameraSetPresetText(PTZ Head, position)

Category: command
With this action, one defines the text that is associated with a particular camera position

and displayed when the camera moves to this position.

PTZ head Camera Global camera number
position Position Number of the camera for which the text is
defined.

Camera spec func U off

Action name: CameraSpecFuncUOff(PTZ Head)
Category: command

Special functions are mapped to this action.
(MBeg functions X, Y, U and V).

PTZ head Camera Global camera number
Camera spec func U on

Action name: CameraSpecFuncUOn(PTZ Head)
Category: command

Special functions are mapped to this action.
(MBeg functions X, Y, U and V).

Parameter Function
PTZ head |Camera |GIobaI camera number

Camera spec func V off

Action name: CameraSpecFuncVOff(PTZ Head)
Category: command

Special functions are mapped to this action.
(MBeg functions X, Y, U and V).

Parameter Function
PTZ head |Camera |GIobaI camera number

Camera spec func V on

Action name: CameraSpecFuncVOn(PTZ Head)
Category: command

Special functions are mapped to this action.

(MBeg functions X, Y, U and V).

Parameter Function

PTZ head |Camera |Global camera number

Camera spec func X off

Action name: CameraSpecFuncXOff(PTZ Head)
Category: command

Special functions are mapped to this action.
(MBeg functions X, Y, U and V).

Parameter Function
PTZ head |Camera |Globa| camera number

Camera spec func X on

Action name: CameraSpecFuncXOn(PTZ Head)
Category: command

Special functions are mapped to this action.

(MBeg functions X, Y, U and V).

Parameter Function

PTZ head Camera Global camera number

Camera spec func Y off

Action name: CameraSpecFuncY Off(PTZ Head)
Category: command

Special functions are mapped to this action.
(MBeg functions X, Y, U and V).

Parameter Function
PTZ head Camera Global camera number

Camera spec func Y on

Action name: CameraSpecFuncYOn(PTZ Head)
Category: command

Special functions are mapped to this action.

(MBeg functions X, Y, U and V).

Parameter Function

PTZ head Camera Global camera number

Camera stop all

Action name: CameraStopAll(PTZ Head)

Category: command

This action stops all movements of the camera.
Parameter Function

PTZ head Camera Global camera number

Camera text off

Action name: CameraTextOff(PTZ Head)

Category: command

This action turns off the text display of the camera.
Parameter Function

PTZ head Camera Global camera number

Camera text on

Action name: CameraTextOn(PTZ Head)

Category: command

This action turns on the text display of the camera.
Parameter Function

PTZ head Camera Global camera number

Camera tour start

Action name: CameraTourStart(PTZ Head, tour ID, tour name)
Category: command

This action starts a pre-defined tour.

Parameter Function

PTZ head Camera Global camera number
tour id TourID Tour id.
tour name TourName Tour name.

Camera tour stop

Action name: CameraTourStop(PTZ Head)

Category: command

This action stops a running tour.

Parameter Function

PTZ head Camera Global camera number

Camera version off

Action name: CameraVersionOff(PTZ Head)

Category: command

With this action the firmware version of the camera will be hidden.

Parameter Function
PTZ head Camera Global camera number

Camera version on

Action name: CameraVersionOn(PTZ Head)

Category: command

With this action the firmware version of the camera will be shown as OSD.

Parameter Function
PTZ head Camera Global camera number

Camera wash-wipe off

Action name: CameraWashOff(PTZ Head)

Category: command

This action disables the functions “wash” and “wipe”.
Parameter Function

PTZ head Camera Global camera number

Camera wash-wipe on
CameraWashWhipeOn

Action name: CameraWashOn(PTZ Head)
Category: command

This action enables the functions “wash” and “wipe”.

Parameter Function
PTZ head Camera Global camera number

Move to default position

Action name:DefaultPosCallUp(Camera)

Action category: command

The PTZ camera moves back to the home position (usually position 1).

Therefor the home position has to be set and saved in advance by the action "SaveDe-
faultPosition".

Parameter Function

PTZ head |Camera |GIobaI camera number

Clear default position

Action name: ClearDefaultPosition(PTZ Head)
Category: command

This action deletes the currently defined default position.

Parameter Function
PTZ head | Camera |Global camera number

Clear preset position

Action name: CameraPresetPosition(PTZ Head, position)

Category: command

This action deletes a position previously saved by the action “SavePresetPosition”.

PTZ head Camera Global camera number
position Number of camera position to be deleted.

Save default position

Action name: SaveDefaultPosition(PTZ Head)

Category: command

This action saves the current position of the camera as default position.

PTZ head Camera Global camera number

Fast speed off

Action name: FastSpeedOff(PTZ Head)

Category: command

This action switches from high-speed of the camera to normal speed of the camera.

PTZ head Camera Global camera number

Fast speed on

Action name: FastSpeedOn(PTZ Head)

Category: command

This action switches from normal speed of the camera to high-speed of the camera.

PTZ head Camera Global camera number

Focus far

Action name:FocusFar(Camera, Speed)
Action category: command

The camera focus adjusts on far.

PTZ head Camera Global camera number

speed Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Focus near

Action name:FocusNear(Camera, Speed)
Action category: command

The camera focus adjusts on near.

Parameter Function
PTZ head Camera Global camera number

speed Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Focus stop

Action name:FocusStop(Camera)

Action category: command

The camera stops the focusing process.

Parameter Function

PTZ head Camera Global camera number

Iris close

Action name:lrisClose(Camera)
Action category: command

The camera closes the aperture.

Parameter Function
PTZ head Camera The camera closes the aperture
Iris open

Action name:lrisOpen(Camera)
Action category: command
The camera opens the aperture.

Parameter Function
PTZ head Camera The camera opens the aperture
Iris stop

Action name:lrisStop(Camera)
Action category: command
The camera stops closing/opening aperture.

Parameter Function
PTZ head

Camera The camera stops
closing/opening

aperture

Move to absolute position
For internal use only

Move to by speed

Forinternal use only

Move to relative position
For internal use only

Pan auto

Action name:PanAuto(Camera, Modus)

Action category: command

Cameras without automatic end stop turn on and on until this function is stopped through the
action "PanStop". Cameras with automatic end stop do stop automatically after a 360 turn.
It depends on the camera type if this function is even available and in case how it is going to
be accomplished.

PTZ head Camera Global camera number

modus Modus Depends on camera type (model and man-
ufacturer)

Pan left

Action name:PanLeft(Camera, Speed)
Action category: command
The camera pans to the left.

PTZ head Camera Global camera number

modus Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Pan right

Action name:PanRight(Camera, Speed)
Action category: command

The camera pans to the right.

PTZ head Camera Global camera number
modus Speed Pan speed.
Pan stop

Action name:PanStop(Camera)
Action category: command
The camera stops pan movement.

PTZ head Camera Global camera number

Move to preset position

Action name:PrePosCallUp(Camera, Position)

Action category: command

The camera moves to a preset position determined in advance through the action "SavePre-
setPosition".

PTZ head Camera Global camera number

position Position Number of selected preset position.
The amount of positions to save depends on

Parameter Function
| |the camera type (model and manufacturer).

Clear preset position

Action name:PrePosClear(Camera, Position)
Action category: command

Clear camera preset position.

Parameter Function

PTZ head Camera Global camera number
position Position Preset position.
Save preset position

Action name:PrePosSave(Camera, Position)
Action category: command
Saves current position of the PTZ camera as a preset position.

Parameter Function

PTZ head Camera Global camera number

position Position Number of preset position on which the cur-
rent position of the camera should be saved.
The amount of positions to save depends on
the camera type (model and manufacturer).

Set camera text

Action name: SaveCameraText(PTZ Head, text)
Category: command

This action saves the camera description in accordance with the parameter “text”.

Parameter Function

PTZ head Camera Global camera number
text Text Text to be displayed on the camera as OSD.
Tilt down

Action name:TiltDown(Camera, Speed)
Action category: command
The camera tilts down.

Parameter Function

PTZ head Camera Global camera number

speed Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Tilt stop

Action name:TiltStop(Camera)

Action category: command

The camera stops the tilt movement.
Function

Parameter
PTZ head |Camera |Global camera number

Tilt up

Action name:TiltUp(Camera, Speed)
Action category: command

The camera tilts up.

PTZ head Camera Global camera number

speed Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Zoom in

Action name:ZoomIn(Camera, Speed)
Action category: command

The Camera zooms in (tele range).

PTZ head Camera Global camera number

speed Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Zoom out

Action name:ZoomOut(Camera, Speed)
Action category: command

The camera zooms out (wide-angle range).

PTZ head Camera Global camera number

speed Speed Depending on the protocol of camera man-
ufacturer velocities between 1 and 255 are
being adjusted to the velocity range of the
camera.

Zoom stop

Action name:ZoomStop(Camera)
Action category: command

The camera stops zooming process.

PTZ head Camera Global camera number

Cash management actions

Cash Management Actions offer the exchange of accompanying meta data between Cash
Management Systems and GeViScope/Re_porter. With these actions money handling pro-
cesses can be documented consistently via video. The use of these actions for starting and
restarting of event recordings leads to the display of the accompanying video datain live

streams of GscView and the storage of those in the video database. The video sequences
recorded by Cash Management Actions can later be recovered easily in GscView by using
the accompanying meta data and a special data filter dialog.

Safebag close

Action name:SafebagClose(WorkingPlace, StartTime, StopTime, SafebagNo, Safe-
baglinfo, SteplD, Debit, Total, Difference, HasDifference, Notes, Coins, Cheques)

Action category: logical

Safebag close.

The integrated Cash Management System sends the action as soon as the user has fin-
ished the counting of one safe bag and has confirmed that to the Cash Management System

Via the parameter "working place" the affected working place will be identified. The further
parameter will be provided with accompanying video data by Cash Management System.
The parameter "SteplD" can be provided with a code figure by the Cash Management Sys-
tem for the currently running process step.

working |WorkingPlace |Working place no.
place

start time |StartTime Time stamp, when the handling of the safe bag began.
stop time |StopTime Time stamp, when the handling of the safe bag stopped.

safebag |SafebagNo Alphanumerical identification of safe bag; search criteria in GscView
no.

safebag |SafebagInfo |Additional alphanumerical identification of safe bag
info

step id StepID Code figure for the currently running process step (given by Cash Man-
agement System individually)

debit Debit Debit amount of safebag

total Total Effective total amount of safe bag according to counting (will be accu-
mulated by Cash Management Systems on counting)

difference| Difference Difference between total amount and result respectively progress of
counting

has dif- |HasDifference Yes = current total amount has a difference to debit amount

ference No = current total amount is identical with debit amount

notes Notes Denomination of counted banknotes. The Display in GscView is in table

form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control "\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

coins Coins Denomination of counted coins. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control "\t'
(0x09).

cheques |Cheques Denomination of counted cheques. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0OD). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

Safebag data

Action name:SafebagData(WorkingPlace, StartTime, SafebagNo, Safebaginfo, StepID,
Debit, Total, Difference, HasDifference, Notes, Coins, Cheques)

Action category: command

Safebag data.

The integrated Cash Management System sends the action as soon as the user has fin-
ished counting one variety of notes or coins and has confirmed that to the system.

Via the parameter "working place" the affected working place will be identified. The further
parameter will be provided with accompanying meta data by the Cash Management Sys-
tem.

The parameter "StepID" can be provided with a code figure by the Cash Management Sys-
tem for the currently running process step.

working |WorkingPlace |Working place no.
place

start time |StartTime Time stamp, when the handling of the safe bag began.

safebag |SafebagNo Alphanumerical identification of safe bag; search criteria in GscView
no.

safebag |SafebagInfo |Additional alphanumerical identification of safe bag

info

step id StepID Code figure for the currently running process step (given by cash man-
agement system individually

debit Debit Debit amount of safe bag

total Total Effective total amount of safe bag according to counting (will be accu-
mulated by the Cash management System during counting)

difference|Difference Difference between total amount and result respectively progress of
counting

has dif- | HasDifference Yes = current total amount has a difference to debit amount

ference No = current total amount is identical with debit amount

notes Notes Denomination of counted banknotes. The Display in GscView is in table

form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control '\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

coins Coins Denomination of counted coins. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control "\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control '\t'
(0x09).

cheques |Cheques Denomination of counted cheques. The Display in GscView is in table
form. The table has max. 2 columns. The individual lines can be sep-
arated via insertion of control "\r' (0x0D). The separation of both
columns within one line can be carried out via insertion of control "\t'
(0x09).

Safebag open

Action name:SafebagOpen(WorkingPlace, StartTime, SafebagNo, Safebaglinfo, SteplD)
Action category: notification

Safebag open.

The integrated Cash Management System sends the action as soon as the user has opened
the safe bag and confirmed that with an entry in the Cash Management System.

The affected Working Place will be identified via the parameter "Working place". Further
parameters will be filled with accompanying meta data on the part of the Cash Management
System.

The Parameter "SteplD" can be addressed by the Cash Management System with a code
figure for the currently running process step.

working |WorkingPlace |Working place no.
place

start time |StartTime Time stamp, when the handling of the safe bag began.

safebag |SafebagNo |Alphanumerical identification of safe bag; search criteria in GscView
no.

safebag |SafebagInfo |Additional alphanumerical identification of safe bag

info

step id StepID Code figure for the currently running process step (given by cash man-
agement system individually

Safebag passing of risk data

Action name:SafebagPassingOfRiskData(WorkingPlace, StartTime, SafebagNo, Safe-
baglinfo, SteplD, UserlD1, UserlD2, TourNumber, TargetWorkingPlace,
PassingOfRiskType)

Action category: command

The integrated Cash Management System sends the action continuously for each safe bag
while the amount of safe bags between two employees will be transferred and this will be
confirmed to the Cash Management System. This part of the money handling process is a
"passing of risk". Via the parameter "working place" the affected transfer place and respect-
ively the working place will be identified. The further parameters will be filled with accom-
panying video data by the Cash Management System. The parameter "SteplD" can be
provided with a code figure by the Cash Management System for the currently running pro-
cess step.

working WorkingPlace Working place no.

place

starttime |StartTime Time stamp, when the handling of the safe bag began.

safebag no. |SafebagNo Alphanumerical identification of safe bag; search criteria in
GscView

safebag SafebaglInfo Additional alphanumerical identification of safe bag

info

step id StepID Code figure for the currently running process step (given by
cash management system individually

user 1 UserID1 Number of employee, transferring the safe bag to another
employee.

user 2 UserID2 Number of employee, who receives the safe bag from another
employee.

tour no TourNumber Tour-Number (optional)

target work-| TargetWorkingPlace|Alphanumerical identification of a place respectively a working

ing place place where safe bags will be transferred to (optional)

passing of |PassingOfRiskType |Detailed information to "passing of risk" (optional)
risk type

Safebag passing of risk start

Action name:SafebagPassingOfRiskStart(WorkingPlace, StartTime, SafebagNo, Safe-
baglinfo, SteplD, UserlD1, UserlD2, TourNumber, TargetWorkingPlace,
PassingOfRiskType)

Action category: command

The integrated Cash Management System sends the action as soon as a number of safe
bags will be transferred between two employees and this is confirmed to the Cash Man-
agement System. This part of the money handling process is a "passing of risk". Via the
parameter "working place" the affected transfer place and respectively the working place
will be identified. The further parameters will be filled with accompanying meta data by the
Cash Management System. The parameter "StepID" can be provided with a code figure by
the Cash Management System for the currently running process step.

working WorkingPlace Working place no.

place

starttime |StartTime Time stamp, when the handling of the safe bag began.

safebag no. |SafebagNo Alphanumerical identification of safe bag; search criteria in
GscView

safebag SafebaglInfo Additional alphanumerical identification of safe bag

info

step id StepID Code figure for the currently running process step (given by
cash management system individually

user 1 UserID1 Number of employee, transferring the safe bag to another
employee.

user 2 UserID2 Number of employee, who receives the safe bag from another
employee.

tour no TourNumber Tour-Number (optional)

target work-| TargetWorkingPlace|Alphanumerical identification of a place respectively a working
ing place place where safe bags will be transferred to (optional)

passing of |PassingOfRiskType |Detailed information to "passing of risk" (optional)
risk type

Safebag passing of risk stop

Action name:SafebagPassingOfRiskStop(WorkingPlace, StartTime, StopTime, Safe-
bagNo, Safebaginfo, SteplD, UserlD1, UserlD2, TourNumber, TargetWorkingPlace,
PassingOfRiskType)

Action category: command

The integrated Cash Management System sends the action closing after the last safe bag,
while the number of safe bags will be transferred between two employees and this is con-
firmed to the Cash Management System. This part of the money handling process is a
"passing of risk". Via the parameter "Working place" the affected transfer place respective
working place will be identified. The further parameters will be filled with accompanying
video data by the Cash Management System. The parameter "SteplD" can be supplied by
Cash Management System with a code figure for a currently running process step

working WorkingPlace Working place no.
place
starttime |StartTime Time stamp, when the handling of the safe bag began.

safebag no. |SafebagNo Alphanumerical identification of safe bag; search criteria in

GscView

safebag SafebagInfo Additional alphanumerical identification of safe bag

info

step id StepID Code figure for the currently running process step (given by
cash management system individually

user 1 UserID1 Number of employee, transferring the safe bag to another
employee.

user 2 UserID2 Number of employee, who receives the safe bag from another
employee.

tour no TourNumber Tour-Number (optional)

target work- TargetWorkingPlace|Alphanumerical identification of a place respectively a working

ing place place where safe bags will be transferred to (optional)

passing of |PassingOfRiskType |Detailed information to "passing of risk" (optional)
risk type

Device information

All actions for low-level notification of the device or media channels changes.

Device found

Action name:DeviceFound(Type, Name, Serial)

Action category: logical

This action will be fired when the USB or NET device is connected to the system. It is also
fired at start-up for all detected devices.

device type |Type |[Type of the device.
device name |Name Device name if assigned in setup, empty otherwise.
serial ID Serial |Serial ID of the device.

New firmware received

Action name:DeviceNewFirmware(Type, Name, Serial, Firmware)

Action category: logical

This action will be fired when the USB or NET device has got the new firmware.

device type Type Type of the device.
device name Name Device name if assigned in setup, empty otherwise.
serial ID Serial Serial ID of the device.

firmware serial |[Firmware |Serial ID of the firmware.

Device plugin error

Action name:DevicePluginError(Channel, Type, SubType, Name, Serial, ErrorClass,
ErrorCode, Description)

Action category: logical

This action notifies device plugin error.

channel Channel Channel.
device type Type Type of the device.
device sub type |SubType Sub type of the device.

device name Name Device name.

serial ID Serial Serial ID of the device.

error class ErrorClass |Error class of the error occured.
error code ErrorCode |Plugin type specific error code.
description Description |Error description.

Device plugin state

Action name:DevicePluginState(Channel, Type, SubType, Name, Serial, State, Intern-
alState, Description)

Action category: logical

This action notifies device plugin state.

channel Channel Channel.

device type Type Type of the device.

device sub type |SubType Sub type of the device.
device name Name Device name.

serial ID Serial Serial ID of the device.
plugin state State New plugin device state.
internal state InternalState |Plugin device specific state.
description Description |State description.

Device reattached

Action name:DeviceReattached(Type, Name, Serial)

Action category: logical

This action will be fired when the USB or NET device is reattached to the system.

devicetype |Type |Type of the device.
device name |Name Device name if assigned in setup, empty otherwise.
serial ID Serial |Serial ID of the device.

Device removed

Action name:DeviceRemoved(Type, Name, Serial)

Action category: logical

This action will be fired when the USB or NET device is disconnected from the system. Itis

also fired at the start-up for all parameterized but not present devices.

device type |Type |Type of the device.
device name [Name Device name if assigned in setup, empty otherwise.
serial ID Serial |Serial ID of the device.

Digital contacts

All actions for handling digital inputs and outputs.

Digital input

Action name:Digitallnput(Contact, State)

Action category: logical
This action will be fired when the state of the digital input has changed.

contact |Contact |Contact.
state State New state.

10143 reset mainboard
Action name:10143ResetMainboard()
Action category: logical

Reset mainboard using 10143a/ab USB Alarm-I/O.

10143 temperature notification
Action name:l10l43Temperature(ID, Temperature)
Action category: logical

Temperature notification from 10143a/ab USB Alarm-1/0O.

1D ID ID of the 10143 module (like I0143-00).
temperature | Temperature |Temperature.

10143 watchdog activate
Action name:10143WDActivate()
Action category: logical

Activate watchdog on 10143a/ab USB Alarm-I/O.

10143 watchdog deactivate
Action name:l10l143WDDeactivate()
Action category: logical

Deactivate watchdog on 10143a/ab USB Alarm-1/O.

10143 watchdog trigger
Action name:10143WDTrigger()
Action category: logical

Trigger watchdog on 10143a/ab USB Alarm-I/O.

Key pressed

Action name:KeyPressed(Key)

Action category: logical

This action is notified if one of the GEVISCOPE system keys is pressed.

Key |Key |System key.

Key released

Action name:KeyReleased(Key)

Action category: logical

This action is notified if one of the GEVISCOPE system keys is released.

Key |Key |System key.

Set digital output

Action name:SetDigitalOutput(Contact, State)

Action category: logical

This action is used to modify the state of the digital output and to notify this change.

contact |Contact |Contact.
state State New state.

Set system LED

Action name:SetLED(LED, State)

Action category: logical

This action is used to turn the system LEDs on or off.

LED |LED |System LED.
state |State |New state.

Set system LED to blink

Action name:SetLEDBIink(LED, LedTimeOnMs, LedTimeOffMs)
Action category: logical

This action is used to blink the system LEDs.

LED LED System LED.
Led time ON |LedTimeOnMs |Time in milliseconds the LED will be switched on.
Led time OFF | LedTimeOffMs ' Time in milliseconds the LED will be switched off.

Lenel

Lenel OnGuard actions.

Lenel access event

Action name:LenelAccessEvent(ID, Panel, Device, SecondaryDevice, CardNumber,
AccessResult, Type, SubType, Description, SerialNumber, TimeStamp, AreaEnteredID,
AreaExitedID, AssetID, CardholderEntered, Duress, ElevatorFloor, FacilityCode, IsRead-
ableCard, IssueCode, CommServerHostName, EventText)

Action category: logical

Lenel OnGuard access event.

1D ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary SecondaryDevice The ID of the secondary device where this event ori-
device ginated.

card number |CardNumber The badge ID for the card that was read, if available.
access result |AccessResult The level of access that was granted that resulted from

reading the card.

type

subtype
description
serial number

time stamp
area entered
area exited
asset ID

cardholder
entered

duress

elevator floor

facility code
readable card
issue code
server host

event text

Type
SubType
Description
SerialNumber

TimeStamp
AreaEnteredID
AreaExitedID
AssetID
CardholderEntered

Duress

ElevatorFloor

FacilityCode
IsReadableCard
IssueCode

Event typei.e., duress, system, etc.
Event sub-typei.e., granted, door forced open, etc.
A human readable, brief description of this event.

A number that uniquely identifies the instance of the
event for a particular panel.

Time stamp.

The ID of the area that was entered, if any.
The ID of the area that was exited, if any.

The ID of the asset related to this event, if any.
Whether entry was made by the cardholder.

Indicates whether this card access indicates an under
duress/emergency state.

The elevator floor on which the access event was gen-
erated, if any.

The facility code for the card that was read, if available.
Whether the card could be read.
The issue code for the card that was read, if available.

CommServerHostName|Host name of the Communication server through which

EventText

Lenel fire event
Action name:LenelFireEvent(ID, Panel, Device, SecondaryDevice, TroubleCode, Type,
SubType, Description, SerialNumber, TimeStamp, CommServerHostName, EventText)
Action category: logical

Lenel OnGuard fire event.

ID
panel
device

secondary
device

trouble code
type
subtype
description

serial num-
ber

time stamp
server host

event text

ID

Panel

Device
SecondaryDevice

TroubleCode
Type
SubType
Description
SerialNumber

TimeStamp

the event arrived.
Text associated with event

The ID that uniquely identifies the type of this event.
The name of the panel where this event originated.
The name of the device where this event originated.

The ID of the secondary device where this event ori-
ginated.

A trouble code associated with the fire event.

Event typei.e., duress, system, etc.

Event sub-typei.e., granted, door forced open, etc.
A human readable, brief description of this event.

A number that uniquely identifies the instance of the event
for a particular panel.

Time stamp.

CommServerHostName Host name of the Communication server through which the

EventText

Lenel intercom event
Action name:LenellntercomEvent(ID, Panel, Device, SecondaryDevice, IntercomData,
LineNumber, Type, SubType, Description, SerialNumber, TimeStamp, Com-
mServerHostName, Event Text)
Action category: logical

Lenel OnGuard intercom event.

event arrived.
Text associated with event

1D ID The ID that uniquely identifies the type of this event.

panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary SecondaryDevice The ID of the secondary device where this event ori-
device ginated.

intercom IntercomData Additional data for the intercom event that occurred.
data

line number |LineNumber The line number involved in the intercom event.
type Type Event typei.e., duress, system, etc.

subtype SubType Event sub-typei.e., granted, door forced open, etc.
description |Description A human readable, brief description of this event.
serial num- | SerialNumber A number that uniquely identifies the instance of the event
ber for a particular panel.

time stamp | TimeStamp Time stamp.

server host |CommServerHostName|Host name of the Communication server through which the
event arrived.

event text EventText Text associated with event

Lenel raw data

Action name:LenelRawData(TimeStamp, LenelData)
Action category: logical

Lenel OnGuard raw data.

time stamp | TimeStamp | Time stamp.
data LenelData |Lenel OnGuard data.

Lenel refresh names
Action name:LenelRefreshNames()
Action category: logical

Lenel OnGuard refresh names.

Lenel security event

Action name:LenelSecurityEvent(ID, Panel, Device, SecondaryDevice, Type, SubType,
Description, SerialNumber, TimeStamp, CommServerHostName, EventText)

Action category: logical

Lenel OnGuard security event.

1D ID The ID that uniquely identifies the type of this event.
panel Panel The name of the panel where this event originated.
device Device The name of the device where this event originated.
secondary SecondaryDevice The ID of the secondary device where this event ori-
device ginated.

type Type Event typei.e., duress, system, etc.

subtype SubType Event sub-typei.e., granted, door forced open, etc.
description |Description A human readable, brief description of this event.
serial num- | SerialNumber A number that uniquely identifies the instance of the event
ber for a particular panel.

time stamp | TimeStamp Time stamp.

server host |CommServerHostName|Host name of the Communication server through which the
event arrived.

event text

EventText

Lenel video event
Action name:LenelVideoEvent(ID, Panel, Device, SecondaryDevice, Channel, Type,
SubType, Description, SerialNumber, TimeStamp, StartTime, EndTime, Com-

mServerHostName, EventText)

Action category: logical
Lenel OnGuard video event.

ID
panel
device

secondary
device

channel

type
subtype
description

serial num-
ber

time stamp
start stamp
end time

server host

event text

Logistic

ID

Panel

Device
SecondaryDevice

Channel

Type
SubType
Description
SerialNumber

TimeStamp
StartTime
EndTime

CommServerHostName

EventText

Text associated with event

The ID that uniquely identifies the type of this event.
The name of the panel where this event originated.
The name of the device where this event originated.

The ID of the secondary device where this event ori-
ginated.

The physical channel the camera is connected to that is
creating this event.

Event typei.e., duress, system, etc.
Event sub-typei.e., granted, door forced open, etc.
A human readable, brief description of this event.

A number that uniquely identifies the instance of the event
for a particular panel.

Time stamp.
The time the video event started
The time the video event ended.

Host name of the Communication server through which the
event arrived.

Text associated with event

Logistic actions are used in the logistic environment where meta data, e.g. barcodes, is
used to start recording events. Later, a research on the barcodes is done to show the scan-
ning operation in the recorded images. To speed up the search, a CRC32 checksum is used
as a hash and serves as a foreign key of the event startd. The foreign key is indexed in the
event table an can therefore be found much faster than a lookup on the string itself. Addi-
tional parameters are used to notify positioning information since the assignment of scan-
ning and recording camera is often done according to the position of the scanner.

Log barcode data

Action name:LogBarcodeData(Barcode, Hash, Scanner, ArealD, AreaName, Channel,

TimeStamp)

Action category: notification
Logistic barcode data .

barcode
hash value

scanner hame|Scanner

area number

Barcode
Hash

ArealD

Barcode.

Hash value of barcode (Optional)
Scanner name or IP Address (Optional)
Global number of area for event mapping (Optional)

area name AreaName |Area name (Optional)
channel Channel Global number of a media channel for mapping (Optional)
time stamp TimeStamp Time stamp (Optional)

Log barcode data LPS

Action name:LogBarcodeDatal PS(Barcode, Hash, Scanner, ArealD, AreaName, Channel,
TimeStamp, X, Y, Z, LpsTagID, LpsStatus, LpsCelllD, LpsArealD, UserParam)

Action category: notification

Logistic barcode data including positioning and area information.

barcode Barcode Barcode.

hash value Hash Hash value of the barcode (Optional)

scanner name|Scanner Scanner name or IP Address (Optional)

area number |ArealD Global number of area for event mapping (Optional)

area name AreaName |Area name. (Optional)

channel Channel Global number of a media channel for mapping (Optional)
time stamp TimeStamp | Time stamp (Optional)

X coordinate |X X coordinate of the position query (Optional)

Y coordinate |Y Y coordinate of the position query (Optional)

Z coordinate |Z Z coordinate of the position query (Optional)

LPS tag ID LpsTagID |Tag ID of the positioning system (Optional)
LPS status LpsStatus |LPS status of the position query(Optional)
LPS cell ID LpsCellID |Cell ID of the positioning system (Optional)
LPSareaIlD |LpsArealD |Area ID of the positioning system (Optional)
User param |UserParam |User param for internal use (Optional)

Log NPR recognition

Action name:LogNPRRecognition(PlateNo, Hash, Country, Channel, TimeStamp, Restric-
tion, Category)

Action category: logical

Log NPR recognition.
plate no. |PlateNo Recognized plate no.
hash value |Hash Hash value of the recognized plate no. (Optional)

country Country Country (Optional)

channel Channel Channel (Optional)

time stamp | TimeStamp | Time stamp (Optional)

restriction |Restriction |Restriction of recognized number (Optional)
category |Category |Category of recognized number (Optional)

LPS Actions

LPS (Local Positioning System) actions are used to query and receive position data. The
positioning system is integrated by the GscLPS plugin and is used to locate tagged objects,
e.g. mobile scanners in the logistic environment. The tags have IDs that can be used to
query the position which is then notified as cartesian or geografic coordinates. Some tags
are able to initiate a position request by an external trigger or by a scan event on a mobile
scanner.

LPS position data

Action name:LPSPositionData(TaglD, ScannerlD, X, Y, Z, Latitude, Longitude, ArealD,
CelllD, Status, TimeStamp, Data, AreaName)

Action category: logical

LPS position data.

tag ID TagID Tag ID.

scanner ID |ScannerID |Scanner ID or IP Address.

X coordinate | X X coordinate of cartesian coordinates.
Y coordinate|Y Y coordinate of cartesian coordinates.
Z coordinate | Z Z coordinate of cartesian coordinates.

Latitude Latitude Latitude of geographic coordinates.
Longitude |Longitude |Longitude of geographic coordinates.

area ID ArealD Area ID.
cell ID CellID Cell ID.
status Status Status.

time stamp | TimeStamp Time stamp.
data Data Data received by the positioning system, eg. barcode.
areaname |AreaName |Area Name.

LPS query position

Action name:LPSQueryPosition(TaglD, ScannerlD, Data)
Action category: command

Send position query for a Tag to LPS server.

tag ID TagID Tag ID.
scanner ID|ScannerID|Scanner ID or IP Address.
data Data Data.

POS

Points of sales (POS) Actions enable the exchange of accompanying meta data between
POS Management Systems and GeViScope/re_porter. With these actions payment pro-
cesses can be documented consistently by video. The use of these actions for start and re-
start of event recordings leads to the output of accompanying meta data in live video in
GSCView as well as in the storage of those in the video data base. The video sequences
recorded via POS Actions can easily be retrieved in GscView using the accompanying meta
data und special data filter dialogs (optional) Besides the actions POSStatus and POSData
for the general integration into POS Management Systems there are also POS actions
which belong to special GeViScope drivers. The actions FillingPumpStatus, Ter-
minalArticleData and TerminalPaymentData are used by the driver "HUTH". The driver
"HUTH" is a GeViScope Media Plugin, which was developed by GEUTEBRUCK, to integ-
rate filling station management systems of the manufacturer HUTH Elektronik Systeme
GmbH into GeViScope/re_porter. The driver is compatible to HUTH Video Interface
T400/T450/Maxi/mini V1.2. The actions InterfaceRawData and InterfaceRawAnswer are
also used by the driver "THUTH". But they only serve for debugging and fault analysis pur-
pose. They can also be used in general for any link that the concemned action supports -
respectively uses these actions. The action BarcodeData serves as a general integration of
barcode scanners.

Barcode data

Action name:BarcodeData(ReaderName, TimeStamp, Barcode)

Action category: notification

The POS Management System (or any other system like barcode scanner or similar) sends
the action as soon as a barcode was read. Via the parameter "ReaderName" the affected
barcode scanner will be identified. The further parameter will be filled with video meta data
by the POS Management System.

scanner ReaderName Alphanumerical identification of the barcode scanner
time stamp TimeStamp Time stamp.

code Barcode Alphanumerical field for recording the scanned barcode.
Filling pump status

Action name:FillingPumpStatus(TerminalName, TimeStamp, PumpNo, Status, Amount,
Price, Details) Action category: notification

The "HUTH" driver sends the action for each status change of one filling pump. Via the para-
meter "TerminalName" the concerned device will be identified. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth devices. The driver sends the
alphanumerical value defined in his setup as "Interface name". The further parameter will be
filled with video meta data by the driver.

Terminal TerminalName |Identifies the affected device. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp Time Stamp, when the status change was detected by the
Huth-System

pump no PumpNo Number of the filling pump

status Status New status of the filling pump

Filling started = Huth-device status "taken off before filling"
Filling stopped = Huth-device status "put back on end of
filling"

Pump released = Huth-device status "disconnect after filling"
Amount message = sum - respectively amount notice of the

filling pump
amount Amount Amount of the booking (optional)
price Price Sum of the booking (optional)
details Details Free text (optional)

Interface raw answer

Action name:InterfaceRawAnswer(InterfaceName, TimeStamp, Data)

Action category: notification

This action is used by the "HUTH" driver. ". It serves only as a debug service and can also
be used in general for any integration that supports or uses this action. The "HUTH" driver
sends the action for each telegram it has sent to the end device. The affected end device
will be identified by the parameter "TerminalName". The "HUTH" driver can always build up
numerous connections to different Huth devices. The driver then sends the alphanumerical
value defined in its setup as "Interface name" The further parameter will be filled with video
meta data by the driver.

interface InterfaceName | Identifies the affected end device. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined

in his setup as "Interface name".

TimeStamp when the telegram was received from the Huth
system.

time stamp TimeStamp

answer Data The sent telegram in raw format.

Interface raw data

Action name:InterfaceRawData(InterfaceName, TimeStamp, Data)

Action category: notification

This action is used by the driver "HUTH". It serves only as a debug service and can also be
used in general for any integration that supports or uses this action. The "HUTH" driver
sends the action for each telegram it has received from the end device. The affected end
device will be identified by the parameter "TerminalName". The "HUTH" driver can always
build up numerous connections to different Huth devices. The driver then sends the alpha-
numerical value defined in its setup as "Interface name" The further parameter will be filled
with video meta data by the driver.

interface InterfaceName | Identifies the affected end device. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp TimeStamp when the telegram was received from the Huth
system.

data Data The received telegram in raw format.

POS data

Action name:POSData(POSName, TimeStamp, Article, Price, Units, PricePerUnit, Line1,
Line2, Line3, Line4, Line5)

Action category: logical

The POS Management System sends the action for each transaction carried out at a cash
point

Via the parameter "POS"the affected cash point will be identified. The further parameter will
be filled with video meta data by the POS Management System

POS POSName Alphanumerical identification of the cash point

time stamp TimeStamp Time Stamp, when the action was send from the POS man-
agement system

article Article Identification of the booked article (optional)

price Price Amount (single price multiplied with number of articles) of
transaction (optional)

units Units Amount of articles of the transaction (optional)

price per unit PricePerUnit Single article price of the transaction (optional)

line 1 Linel Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

line 2 Line2 Alphanumerical fields /sections for storing of additional

information concerning the transaction or for storing inform-

ation which have been printed out on the sales slip (optional)

line 3 Line3 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

line 4 Line4 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

line 5 Line5 Alphanumerical fields /sections for storing of additional
information concerning the transaction or for storing inform-
ation which have been printed out on the sales slip (optional)

POS status

Action name:POSStatus(POSName, TimeStamp, Status, Details)

Action category: logical

The POS management system sends the action as soon as the cash point is opened or
closed or as soon as a cancellation will be made at a cash point.

Via the parameter "POS" the concerned cash point will be identified. The further parameter
will be filled with video meta data from the POS management system.

The parameter "Status" can be addressed by the POS management system with a code fig-
ure for the currently notified status.

POS POSName Alphanumerical identification of cash point

time stamp TimeStamp Time Stamp, when the action was sent from the POS man-
agement system

status Status Identification figure for the currently notified status

details Details Additional alphanumerical information from POS management

system (optional)

Terminal article data

Action name:TerminalArticleData(TerminalName, TimeStamp, CashierStation, PumpNo,
AlarmStatus, Amount, Price, Details)

Action category: notification

The "Huth" driver sends the actions for each product-group-booking. Via the parameter "Ter-
minalName" the affected device will be identified. The "HUTH" driver is principally able to
build up several connections to different Huth devices . The driver sends the alphanumerical
value defined in his setup as "Interface name". The further parameter will be filled with video
meta data via the driver.

Terminal TerminalName |Identifies the affected device. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp Time Stamp, when the status change was detected by the
Huth-System

cashier station |CashierStation |Number of the cash point where the booking is carried out
pump no PumpNo Number of the filling point

alarm AlarmStatus Status of Alarm-Flags
Yes = Alarm-Flag was set by the Huth system
No = Alarm-Flag not set

amount Amount Amount of the booking (optional)
price Price Sum of the booking (optional)
details Details Free text (optional)

Terminal payment data

Action name:TerminalPaymentData(TerminalName, TimeStamp, CashierStation,
PumpNo, AlarmStatus, Amount, Price, Details)

Action category: notification

The "HUTH" driver sends the action for each termination of a booking with the used method
of payment. Via the parameter "TerminalName" the affected device will be identified. The
"HUTH" driver is principally able to build up several connections to different Huth devices.
The driver sends the alphanumerical value defined in his setup as "Interface name". The fur-
ther parameter will be filled with video meta data via the driver.

Terminal TerminalName |Identifies the affected device. The "HUTH" driver is prin-
cipally able to build up several connections to different Huth
devices. The driver sends the alphanumerical value defined
in his setup as "Interface name".

time stamp TimeStamp Time Stamp, when the status change was detected by the
Huth-System

cashier station |CashierStation |Number of the cash point where the booking is carried out
with the used payment method

pump no PumpNo Number of the filling point (optional)

alarm AlarmStatus Status of Alarm-Flags
Yes = Alarm-Flag was set by the Huth system
No = Alarm-Flag not set

amount Amount Amount of the booking (optional)
price Price Sum of the booking (optional)
details Details Free text (optional)

Remote export

The actions of the category "Remote Export" subserve to start and control exports over the
network. The actions are only at disposal if GSCRemEXx service runs on every device and a
connection to a central GeViSoft server persists. The GSCServer and GSCRemEXx service
have to run together on a local machine otherwise exports are not possible. The
GSCRemEXx service has to be setup in advance by GSCRemExEditor. The exports can be
executed by a PILOT center device or other software systems (SDK based,
GEUTEBRUECK devices). The PILOT is a system management console of
GEUTEBRUECK which simplifies the handling of complex security systems. The PILOT
among others can be used to control GSCView. Especially in view of the fact of exports the
user can define start and end points by the help of the PILOT through GSCRemEXx ("SetEx-
portMarker" action). GSCView remembers the points in time and inserts them to the action
"StartRemoteExport". The action "StartRemoteExport" is initiated by GSCView after the
PILOT has send the action "InitializeRemoteExport" by indirection via the GeViSoft server
and GeViScope server to GSCView. GSCView sends the action "StartRemoteExport" to

the GSCRemEXx service and triggers the appropriate export. Exports that have been started
through GSCRemEXx service can be started or aborted from other devices or software sys-
tems over the network. Exports that have been started locally in GSCView cannot be con-
trolled from other devices or software systems. In the curse of an export process no new
export can be started. This export has to be restarted after the running export process has
been completed! The actions "SetExportMarker" and "InitializeRemoteExport" have been
developed especially for the PILOT.

Cancel export

Action name: CancelExport(ExportID, AbortFlag)

Action category: command

Through this action the running export process with the specified export ID is being aborted
if GSCView remote-controls the GSCRemEXx service. If the GSCRemEXx service is remote-
controlled by an external application the external application has to send the action to abort
the running export process.

export GUID |ExportID ID of the export process that has to be aborted.
The export GUID is being assigned on the action "StartRe-
moteExport".
e.g.: 01E68451-2406-484d-A9BC-5140762931E0
abort flag AbortFlag reason for abort
0: user abort; abort of export through user
1: low disc space; too little storage capacity
2: no user rights; access based on restricted user rights not pos-
sible
3: error; internal error

Export finished

Action name:ExportFinished(ExportID, Success)

Action category: notification

The GSCRemEXx service notifies through this action that the running process was com-
pleted.

Possible status messages are: user abort, low disc space, no user rights, error.

export GUID |ExportID ID of completed export process. The export GUID is being assigned
on the action "StartRemoteExport".
e.g.: 01E68451-2406-484d-A9BC-5140762931E0
success Success reason for abort
0: user abort; abort of export through user
1: low disc space; too little storage capacity
2: nouser rights; access based on restricted user rights not pos-
sible
3: error; internal error

Export progress

Action name:ExportProgress(ExportID, Progress)

Action category: notification

The GSCRemEXx service notifies the current status of the running export process in %.

export GUID |ExportID ID of running export. The export GUID is being assigned on the
action "StartRemoteExport".
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

progress Progress shows current status of the export process in %

Initialize remote export

Action name:/nitializeRemoteExport(Viewer, Device)

Action category: command

This action is being used especially in the context of control units or systems like for
example the PILOT.

The PILOT center device notifies GSCView that a new export has to be initiated. Thereupon
GSCView creates the action "StartRemoteExport" with the appropriate parameters.

viewer Viewer global viewer number

device GUID |Device ID of the PILOT center device (transmitted by the PILOT itself)
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

Set export marker

Action name: SetExportMarker(Viewer, Marker)

Action category: command

This action is being used especially in the context of control units or systems like for
example the PILOT.

It indicates GSCView that an export start and end point has to be set on the current position
of viewer X.

The so-called markers are being transferred automatically into the "StartRemoteExport"
action once the "InitializeRemoteExport" action has been sent from the PILOT. The action
"StartRemoteExport" transfers the start and end points to the GSCRemEXx service which
conducts the appropriate export.

viewer Viewer global viewer number
marker Marker tags and stores the start and end point of the data that has to be
exported

(selection begin=0, selection end=1)

Start remote export

Action name: StartRemoteExport(ExportID, Device, BackupFormat, Channel, Selec-
tionBegin, SelectionEnd, JobID)

Action category: command

This action tells the GSCRemEXx service to start a new export.

The action "StartRemoteExport" was created because the PILOT or another external soft-
ware system did send the action "InitializeRemoteExport" to GSCView before.

export GUID |ExportID ID of running exports. The export GUID has to be determined sep-
arately in advance because the action itself does not create a
GUID.

device GUID |Device ID of PILOT center device. If no PILOT is being used the blank

GUID can be used instead.
e.g.: 01E68451-2406-484d-A9BC-5140762931E0

format BackupFormat |defines the format of the exported file
O=default (in this case it equals 1=GBF)
1=GBF(GEUTEBRUECK backup file)
2=MPEG2

channel Channel global channel number/camera number

start time SelectionBegin |holds the position of the marker for the start point ("selection
begin")

end time SelectionEnd |holds the position of the marker for the end point ("selection end")

job ID JobID

Start scene store

Contains the login data (server name, user name, encoded pass-
word)

Optional second user password. The login data is separated by |.
e.g.: <server name>|<user>|<PW>|<user2>|<PW2>
localhost|admin|test|

If there is no second user (second user password) nothing has to
be

entered at this point.

Passwords in this parameter are encoded. Therefor the function
DBIEncodeString() of GscDBI-DLL (from GeViScope/re_porter
SDK) is being used.

Action name: StartSceneStore(SceneStorelD, CutList, PreHistorylLength, Record-

ingLength)

Action category: command

Forinternal use only!

scene store |SceneStorelD
GUID

Scene store GUID.

Cut-list.

pre-history |PreHistoryLength Pre-history length.

recording |RecordinglLength Recording length.

cut-list CutList
length

length
SKIDATA

SKIDATA messages.

SKIDATA control

Action name: SkidataControl(InterfaceName, Data)

Action category: logical

SKIDATA control information.

interface| InterfaceName Interface name.

state Data Interface state.

SKIDATA device event

Action name:SkidataDeviceEvent(InterffaceName, DevicelD, EventCode)

Action category: logical

SKIDATA device event.

interface |InterfaceName Interface name.

device DevicelD
event code|EventCode

SKIDATA entry

Device ID.
Event code.

Action name: SkidataEntry(InterfaceName, MessageCode, TranscactionlD, CarParkNo,

DevicelD)

Action category: logical
SKIDATA entry.

interface | InterfaceName |Interface name.
message | MessageCode |Message code.
transaction | TranscactionID Transcaction ID.
car park CarParkNo Car park no.
device DeviceID Device ID.

SKIDATA exit

Action name: SkidataExit(InterfaceName, MessageCode, TranscactionlD, CarParkNo,

DevicelD)
Action category: logical
SKIDATA exit.

interface | InterfaceName |Interface name.
message | MessageCode |Message code.
transaction | TranscactionID Transcaction ID.
car park CarParkNo Car park no.
device DevicelD Device ID.

SKIDATA transaction

Action name: SkidataTransaction(InterfaceName, MessageCode, TranscactioniD,

CarParkNo, DevicelD)
Action category: logical
SKIDATA transaction.

interface |InterfaceName |Interface name.
message |MessageCode |Message code.
transaction | TranscactionID Transcaction ID.
car park CarParkNo Car park no.
device DevicelD Device ID.

System actions

All actions describing system behaviour.

Custom action

Action name:CustomAction(Int, String)

Action category: logical

This action has no side effects and can be used for customer purposes.

INT parameter Int Numeric parameter.
STRING parameter |String | Literal parameter.

Database recording info per ring

Action name:DatabaseRecordinglnfoRing(DatabaseRing, NoVideoRecording, NoAu-
dioRecording, NoRecordingAtAll, VideoSamplesPerSecond, VideoMBPerSecond, Audi-
oSamplesPerSecond, AudioMBPerSecond, WriteWaitTimesPercent, RingCapacity,
Oldestltem, RecordingDepth, EstimatedRequiredCapacity)

Action category: logical

Database recording info per ring.

database ring
no video recording
no audio recording
no recording

video samples/s
video samples MB/s
audio samples/s
audio samples MB/s
write wait %

ring capacity
oldest item
recording depth

DatabaseRing
NoVideoRecording
NoAudioRecording
NoRecordingAtAll

VideoSamplesPerSecond
VideoMBPerSecond
AudioSamplesPerSecond
AudioMBPerSecond
WriteWaitTimesPercent
RingCapacity
OldestItem
RecordingDepth

Database ring.

Video is recording or not.

Audio is recording or not.

Video and/or audio is recording or not.

Video samples per second.
Video MB per second.

Audio samples per second.
Audio MB per second.

Write wait times in percent.
Ring capacity.

Time stamp of the oldest item.
Recording depth in hours.

estimated required capacity | EstimatedRequiredCapacity | Estimated required capacity.

Database recording info total
Action name:DatabaseRecordingInfoTotal(NoVideoRecording, NoAudioRecording, NoRe-
cordingAtAll, VideoSamplesPerSecond, VideoMBPerSecond, AudioSamplesPerSecond,
AudioMBPerSecond, WriteWaitTimesPercent, TotalCapacity, FreeCapacity, Alloc-
atedCapacity, Oldestltem, RecordingDepth, EstimatedRequiredCapacity, RequiredCa-
pacityFactor, RequiredCapacityAvailable)

Action category: logical

Database recording info total.

no video recording
no audio recording
no recording

video samples/s
video samples MB/s
audio samples/s
audio samples MB/s
write wait %

total capacity

free capacity
allocated capacity
oldest item
recording depth

estimated required capacity

required capacity factor

required capacity available |RequiredCapacityAvailable

Database started

NoVideoRecording
NoAudioRecording
NoRecordingAtAll

VideoSamplesPerSecond
VideoMBPerSecond
AudioSamplesPerSecond
AudioMBPerSecond
WriteWaitTimesPercent
TotalCapacity
FreeCapacity
AllocatedCapacity
OldestItem
RecordingDepth

EstimatedRequiredCapacity

RequiredCapacityFactor

Action name:DatabaseStarted(Status, TotalSize)

Action category: logical

Video is recording or not.
Audio is recording or not.
Video and/or audio is recording or not.

Video samples per second.
Video MB per second.

Audio samples per second.
Audio MB per second.

Write wait times in percent.
Total capacity.

Free capacity.

Allocated capacity.

Time stamp of the oldest item.
Recording depth in hours.
Estimated required capacity.

Required capacity factor.
Required capacity available.

This action will be fired at the database start-up.

status Status Database status message.
total size | TotalSize |Database total size.

Event recording changed

Action name:EventRecordingChanged(EventID, TypelD)
Action category: logical

Event recording settings are changed.

instance ID |EventID |Instance ID of the event.
event type |TypelD |Type of the event.

Event started

Action name:EventStarted(EventID, TypelD, ForeignKey)
Action category: logical
Event has started.

instance ID |EventID Instance ID of the event.
event type |[TypelD Type of the event.
foreign key |ForeignKey |Optional foreign key used to start the alarm.

Event stopped

Action name:EventStopped(EventID, TypelD)
Action category: logical

Event has stopped.

instance ID |EventID |Instance ID of the event.
event type |TypelD |Type of the event.

FRC notification

Action name:FRCNotification(Notification, Param, Description, XMLInfo)
Action category: logical
FRC notification.

notification Notification |Notification reason.

param Param Additional parameter.

description Description |Optional notification text.

additional info | XMLInfo Optional additional info (usually as XML string).

GEMOS alarm

Action name:GEMOSalarm(GEMOSkey, GEMOSint, GEMOSstr)
Action category: logical

GEMOS alarm notification.

GEMOS key GEMOSkey GEMOS alarm key.
GEMOS int |GEMOSint |GEMOS alarm integer parameter.
GEMOS str |GEMOSstr |GEMOS alarm string parameter.

Kill all events

Action name:KillAllEvents()
Action category: logical

Kill all active events.

Kill event

Action name:KillEvent(TypelD)
Action category: logical

Kill event.

event type | TypelD |Type of the event.

Kill event by instance
Action name:KillEventByID(EventID)
Action category: logical

Kill event by instance ID.

instance ID |EventID |Instance ID of the event.

Live check

Action name:LiveCheck(Counter, Date)

Action category: logical

This action will be fired every 10 seconds and intended for use as live check.

counter Counter |This is the number of already fired live check actions.
time stamp |Date Current server time.

Set clock
Action name:SetClock(Date)
Action category: logical

Set clock.

current time |Date |Currenttime.

Setup changed

Action name:SetupChanged(User, Host, Date, ResourceKind, ResourcelD, ChangeKind,
Details, ClientHost, ClientType, ClientAccount)
Action category: logical

Setup changed.

user name User Name of the user modified the setup.
remote host Host Host from where the connection was done.
currenttime |Date Current time.

resource kind |ResourceKind |Modified resource kind.

resource ID ResourcelID Modified resource ID.

change kind |ChangeKind |Change kind.

details Details Details of the modification.

client host ClientHost Host from where the connection is done.

client type ClientType Client type.
client account |ClientAccount |User account from where the connection is done.

Setup upload progress

Action name:SetupUploadProgress(User1, User2, Host, Progress, Date)
Action category: logical

Setup upload progress.

first user Userl Name of the user modified the setup.
second user |User2 Name of the second user by four eyes authentication.
remote host |Host Host from where the connection was done.

progress % |Progress |Progress in percent.
current time |Date Current stage time.

Set watchdog

Action name:SetWatchdog(Timeout)
Action category: logical

Set watchdog.

timeout | Timeout | Timeout in seconds, before the watchdog must be retriggered and before the
hardware watchdog will set the hardware contact.

SMRP viewer cleared
Action name:SMRPViewerCleared()
Action category: logical

SMRP viewer cleared.

SMRP viewer connected

Action name:SMRPViewerConnected(Server, Channel)
Action category: logical

SMRP viewer connected to the camera.

server |Server |Server name.
channel |Channel |Channel.

SMTP mail

Action name:SMTPMailSend(Subject, To, Cc, Body, Channel)
Action category: logical

This action will send a user defined email if GscMail is connected

subject |Subject Mail subject.

to To Mail recepients.

cc Cc Carbon copy recepients.
body Body Mail body.

channel |Channel |Channel.

Start event
Action name:StartEvent(TypelD, ForeignKey)
Action category: logical

Start event.

event type |TypelD Type of the event.
foreign key |ForeignKey |Optional foreign key used to store for the alarm.

Stop all events
Action name:StopAllEvents()
Action category: logical

Stop all active events.

Stop event

Action name:StopEvent(TypelD)
Action category: logical

Stop event.

event type | TypelD |Type of the event.

Stop event by instance
Action name:StopEventByID(EventID)
Action category: logical

Stop event by instance ID.

instance ID |EventID |Instance ID of the event.

System error

Action name:SystemError(Source, Message, WindowsError, Description, XMLInfo)
Action category: logical

Notify system error.

source subsystem |Source Source of the message.

message code Message Kind of the message.

Windows error code |WindowsError (Optional Windows error code.

description Description Optional description of the message.

additional info XMLInfo Optional additional info (usually as XML string).

System info

Action name:SystemInfo(Source, Message, Description, XMLInfo)
Action category: logical

Notify system information.

source subsystem |Source Source of the message.
message code Message Kind of the message.
description Description |Optional description of the message.

additional info XMLInfo Optional additional info (usually as XML string).

System settings changed

Action name:SystemSettingsChanged(SetupChanged, User1, User2, Host,
TimeRangeChanged, TimeRange, LicenceChanged, Date)

Action category: logical

Setup of the system and/or the current time range changed.

setup changed SetupChanged System setup has changed.

first user Userl Name of the user modified the setup.
second user User2 Name of the second user by four eyes authentication.
remote host Host Host from where the connection was done.

time range changed ' TimeRangeChanged | Time range has changed.

current timerange |TimeRange Currently active time range.

licence changed LicenceChanged Licence has changed.

change time Date Time of the system settings changed.
System started

Action name:SystemStarted(Date)
Action category: logical
This action will be fired only once at the system start-up.

start time |Date |Time of the system start-up.

System terminating

Action name:SystemTerminating(Date, WindowsShutdown)
Action category: logical

This action will be fired when the system is going shutdown.

stop time Date Time of the system shutdown.
Windows shut- |WindowsShutdown | Indicates whether the system shutdown is done due to the
down windows shutdown.

System warning

Action name:SystemWarning(Source, Message, WindowsError, Description, XMLInfo)
Action category: logical

Notify system warning.

source subsystem |Source Source of the message.

message code Message Kind of the message.

Windows error code |WindowsError (Optional Windows error code.

description Description Optional description of the message.

additional info XMLInfo Optional additional info (usually as XML string).
Transfer binary buffer

Action name:TransferBinaryBuffer(InternalHandle, Parameter)
Action category: logical
Transfer binary buffer.

internal handle |InternalHandle Internal handle.
parameter Parameter Parameter.

Transfer binary channel buffer

Action name:TransferBinary ChannelBuffer(Channel, InternalHandle, Parameter)
Action category: logical

Transfer binary channel buffer.

channel Channel Channel.
internal handle |InternalHandle Internal handle.
parameter Parameter Parameter.

User login
Action name:UserLogin(User1, User2, Host, ClientHost, ClientType, ClientAccount)

Action category: logical
This action will be fired when the user has connected to the system.

first user Userl Name of the user connected to the system.

second user |User2 Name of the second user by four eyes authentication.
remote host | Host Host from where the connection is done.

client host ClientHost Host from where the connection is done.

client type ClientType Client type.
client account |ClientAccount |User account from where the connection is done.

User login failed
Action name:UserLoginFailed(User1, User2, Host, RejectReason, ClientHost, ClientType,
ClientAccount)

Action category: logical
This action will be fired when the user has tried to connect to the system but was rejected.

first user Userl Name of the user tried to connect to the system.
second user | User2 Name of the second user by four eyes authentication.
remote host |Host Host from where the connection is done.

reject reason |RejectReason |Reason of the rejection.

client host ClientHost Host from where the connection is done.

client type ClientType Client type.
client account |ClientAccount |User account from where the connection is done.

User logout
Action name:UserLogout(User1, User2, Host, ClientHost, ClientType, ClientAccount)

Action category: logical
This action will be fired when the user has disconnected from the system.

first user Userl Name of the user disconnected from the system.
second user |User2 Name of the second user by four eyes authentication.
remote host |Host Host from where the connection was done.

client host ClientHost Host from where the connection is done.

client type ClientType Client type.
client account |ClientAccount |User account from where the connection is done.

Video control actions

All actions to control the video streams, also all notifications about the state change of the
video streams.

Activate external process

Action name:ActivateExternalProcess(Channel, TimeStamp, ExternalSystem)
Action category: logical

Activate external process.

channel Channel Channel.
time stamp TimeStamp Time stamp.
external system |ExternalSystem |External system to activate.

Change AD parameter set

Action name:ChangeADParameterSet(Channel, ParameterSet)
Action category: logical

This action changes the current AD parameter set of the video channel.

channel Channel Channel.
AD parameter set |ParameterSet |The name of the new AD parameter set.

Change camera profile

Action name:ChangeCameraProfile(HardwareModule, CameraProfile)
Action category: logical

This action changes the current camera profile of the hardware module.

hardware |HardwareModule |Hardware module.
profile CameraProfile The name of the camera profile.

Change CPA parameter set

Action name:ChangeCPAParameterSet(Channel, ParameterSet)
Action category: logical

This action changes the current CPA parameter set of the video channel.

channel Channel Channel.
CPA parameter set | ParameterSet | The name of the new CPA parameter set.

Change OBTRACK parameter set

Action name:ChangeObtrackParameterSet(Channel, ParameterSet)

Action category: logical

This action changes the current OBTRACK parameter set of the video channel.

channel Channel Channel.
OBTRACK parameter set | ParameterSet The name of the new OBTRACK parameter set.

Change VMD parameter set

Action name:ChangeVMDParameterSet(Channel, ParameterSet)
Action category: logical

This action changes the current VMD parameter set of the video channel.

channel Channel Channel.
VMD parameter set |ParameterSet | The name of the new VMD parameter set.

Channel error

Action name:ChannelError(Channel, SensorType, Source, Message, WindowsError,
Description, XMLInfo)

Action category: logical

Notify channel error.

channel Channel Channel.

sensor type SensorType Sensor type.

source subsystem |Source Source of the message.

message code Message Kind of the message.

Windows error code |WindowsError (Optional Windows error code.

description Description Optional description of the message.

additional info XMLInfo Optional additional info (usually as XML string).
Channel info

Action name:Channellnfo(Channel, SensorType, Source, Message, Description, XMLInfo)
Action category: logical
Notify channel information.

channel Channel Channel.

sensor type SensorType |Sensor type.

source subsystem |Source Source of the message.

message code Message Kind of the message.

description Description |Optional description of the message.

additional info XMLInfo Optional additional info (usually as XML string).

Channel live check

Action name:ChannelLiveCheck(Channel, SensorType, TimeStamp)
Action category: logical

This action notifies that the channbel is alive.

channel Channel Channel.
sensor type |SensorType |Sensor type.
time stamp | TimeStamp |Time stamp.

Channel warning

Action name:ChannelWarning(Channel, SensorType, Source, Message, WindowsEtrror,
Description, XMLInfo)

Action category: logical

Notify channel warning.

channel Channel Channel.

sensor type SensorType Sensor type.

source subsystem |Source Source of the message.
message code Message Kind of the message.

Windows error code |WindowsError Optional Windows error code.
description Description Optional description of the message.
additional info XMLInfo Optional additional info (usually as XML string).

CPA measurement

Action name:CPAMeasurement(Channel, Correlation)
Action category: logical

CPA measurement.

channel Channel Channel.
correlation |Correlation |Correlation factor.

IAS settings changed

Action name:lASSettingsChanged(Channel, SensorType)
Action category: logical

IAS settings changed.

channel Channel Channel.
sensor type [SensorType |Sensor type.

IP camera raw command
Action name:IPCameraRawCommand(URL, User, Password, POST)
Action category: logical

This action sends a special command to the IP camera.

url URL Complete command URL (like http://192.168.0.165:80/-
set?daynight=night).

user User User name to authenticate by the camera (optional).

password [Password Password to authenticate by the camera (optional).

post POST POST parameters (optional, separate lines with \\r\\n).

Make CPA reference image

Action name:MakeCPAReferencelmage(Channel)
Action category: logical

Make CPA reference image.

channel |Channel (Channel.

Media channel setup

Action name:MediaChannelSetuplnfo(Channel, TimeStamp, Parameter)
Action category: logical

Media channel setup info.

channel Channel Channel.
time stamp | TimeStamp | Time stamp.
parameter |Parameter |Parameter.

NPR raw data

Action name:NPRRawData(PlateNo, Country, Channel, TimeStamp, ZoneRect, Weight,
ZoneState, ZonePlace, Speed, Direction, Zonelndex, CurBest, PlateWidth, PlateHeight,
PlateAngle, SymHeight, Type)

Action category: logical

NPR raw data.

plate no. PlateNo Recognized plate no.

country Country Country.

channel Channel Channel.

time stamp TimeStamp | Time stamp.

zone rect ZoneRect |Zone rectangle.
weight Weight Weight of recognition.
zone state ZoneState |Zone state.

zone status ZonePlace |Zone status.

speed Speed Speed in km/h

direction Direction Direction of the motion.
zone index Zonelndex |Zoneindex.

best CurBest Current recognition is best.

plate width Platewidth |Plate width.
plate height PlateHeight |Plate height.
plate angle PlateAngle |Plate angle.
Symbol height |SymHeight |Symbol height.
type Type Number type.

NPR recognition

Action name:NPRRecognition(PlateNo, Country, Channel, TimeStamp, ZoneRect, Restric-
tion, Category, Speed, Direction, Zonelndex, Type, Weight)

Action category: logical

NPR recognition.

plate no. PlateNo Recognized plate no.
country Country Country.
channel Channel Channel.

time stamp |TimeStamp |Time stamp.

zonerect |ZoneRect |Zone rectangle.

restriction |Restriction |Restriction of recognized number.
category Category Category of recognized number.
speed Speed Speed in km/h

direction Direction Direction of the motion.

zone index |Zonelndex |Zoneindex.

type Type Number type.

weight Weight Weight of recognition.

OBTRACK channel counter

Action name:ObtrackChannelCounter(Channel, CounterType, CounterValue, ObjectDir-
ection, TimeStamp, ResetTimeStamp)

Action category: logical

OBTRACK channel counter.

channel Channel Channel.
counter type CounterType Counter type.
counter value CounterValue Counter value.

object direction |ObjectDirection |Object direction.

time stamp TimeStamp Time stamp.
reset time stamp |ResetTimeStamp |Reset time stamp.

OBTRACK channel counter threshold

Action name:ObtrackChannelCounterThreshold(Channel, CounterType, CounterValue,
ExceedingDirection, TimeStamp)

Action category: logical

OBTRACK channel counter threshold.

channel Channel Channel.
counter type CounterType Counter type.
counter value CounterValue Counter value.

exceeding direction |ExceedingDirection |Exceeding direction.
time stamp TimeStamp Time stamp.

OBTRACK channel set counter

Action name:ObtrackChannelSetCounter(Channel, CounterType, CounterValue,
TimeStamp)

Action category: logical

OBTRACK channel set counter.

channel Channel Channel.
counter type |CounterType |Counter type.
counter value |CounterValue |Counter value.
time stamp TimeStamp | Time stamp.

OBTRACK frame raw data

Action name:ObtrackFrameRawData(TimeStamp, Channel, Brightness, Contrast)
Action category: logical
OBTRACK frame raw data.

time stamp | TimeStamp |Time stamp.
channel Channel Channel.
brightness |Brightness |Brightness.
contrast Contrast Contrast.

OBTRACK group counter

Action name:ObtrackGroupCounter(Groupld, CounterType, CounterValue, ObjectDirection,
TimeStamp, ResetTimeStamp, GroupName)

Action category: logical

OBTRACK group counter.

group id GrouplId Group ID.
counter type CounterType Counter type.
counter value CounterValue Counter value.

object direction |ObjectDirection |Object direction.
time stamp TimeStamp Time stamp.
reset time stamp |ResetTimeStamp |Reset time stamp.
group name GroupName Group name.

OBTRACK group counter threshold

Action name:ObtrackGroupCounterThreshold(Groupld, CounterType, CounterValue,
ExceedingDirection, TimeStamp, GroupName)

Action category: logical

OBTRACK group counter threshold.

group id GrouplId Group ID.
counter type CounterType Counter type.
counter value CounterValue Counter Value.

exceeding direction |ExceedingDirection |Exceeding direction.
time stamp TimeStamp Time stamp.
group name GroupName Group name.

OBTRACK group set counter

Action name:ObtrackGroupSetCounter(Groupld, CounterType, CounterValue, TimeStamp,
GroupName)

Action category: logical

OBTRACK group set counter.

group id Groupld Group ID.
counter type |CounterType |Counter type.
counter value |CounterValue |Counter value.
time stamp TimeStamp | Time stamp.
group name |GroupName |Group name.

OBTRACK object raw data

Action name:ObtrackObjectRawData(TimeStamp, Channel, Area, ObjectID, ObjectStatus,
ObjectClass, Confidence, Position, Speed, Duration, Direction, Size, ObjectWidth,
ObjectHeight, ProcessSize, GscNetName)

Action category: logical

OBTRACK object raw data.

time stamp TimeStamp | Time stamp.

channel Channel Channel.
area no Area Area no.
object ID ObjectID Object ID.

object status |ObjectStatus Object status.
object class |ObjectClass |Object class.
confidence Confidence |Confidence.

position Position Position.
speed Speed Speed.
duration Duration Duration.
direction Direction Direction.
object size Size Object size.

object width |ObjectWidth |Object width in meters.
object height |ObjectHeight |Object height in meters.
process size |ProcessSize |Process size.

GSC net name |GscNetName |GeviScope network name.

OBTRACK tunnel alarm

Action name:ObtrackTunnelAlarm(Channel, TimeStamp, AlarmReason, ObjectID,
AlarmArealD, ObjectArea)

Action category: logical

OBTRACK tunnel alarm notification.

channel Channel Channel.

time stamp TimeStamp | Time stamp.
alarm reason |AlarmReason Alarm reason.
object ID ObjectID Object ID.
alarm area ID |AlarmArealD |Alarm area ID.
objectarea |ObjectArea |Object area.

Sensor alarm finished

Action name:SensorAlarmFinished(Channel, SensorType)
Action category: logical

This action will be fired when the alarm is finished.

channel Channel Channel.
sensor type |SensorType |Sensor type.

Sensor inhibit alarm finished

Action name:SensorinhibitAlarmFinished(Channel, SensorType)
Action category: logical

This action will be fired when the inhibit alarm finished.

channel Channel Channel.
sensor type |SensorType Sensor type.

Sensor inhibit video alarm
Action name:SensorinhibitVideoAlarm(Channel, SensorType, ADArea, ADCell,
VMDGroup, VMDZone, VMDCycle, AlarmArea, ObjectClass)

Action category: logical
This action will be fired when the motion in inhibit area detected.

channel Channel Channel.

sensor type SensorType Sensor type.

AD alarm area ADArea AD alarm area.

AD cell ADCell AD cell nr.

VMD alarm group |VMDGroup |VMD alarm group.
VMD zone VMDZone VMD zone nr.

VMD cycle VMDCycle |VMD measure cycle.
alarm area AlarmArea |Alarm area.

object class ObjectClass | OBTRACK object class.

Sensor video alarm
Action name:SensorVideoAlarm(Channel, SensorType, ADArea, ADCell, VMD Group,

VMDZone, VMDCycle, AlarmArea, ObjectClass)
Action category: logical

This action will be fired when video alarm is detected.

channel Channel Channel.

sensor type SensorType |Sensor type.

AD alarm area ADArea AD alarm area.

AD cell ADCell AD cell nr.

VMD alarm group |VMDGroup |VMD alarm group.
VMD zone VMDZone VMD zone nr.

VMD cycle VMDCycle |VMD measure cycle.
alarm area AlarmArea |Alarm area.

object class ObjectClass | OBTRACK object class.

Set system time

Action name:SetSystemTime(TimeStamp)
Action category: logical

Set system time.

time stamp | TimeStamp | Time stamp.

Set test picture mode

Action name:SetTestPictureMode(Channel, Mode)
Action category: logical

Enable or disable test picture generator.

channel |Channel (Channel.
enable |Mode Enable or disable test picture generator.

Video contrast detected

Action name:VideoContrastDetected(Channel)

Action category: logical

This action will be fired when the contrast is detected in the video signal.

channel |Channel (Channel.

Video contrast failed

Action name:VideoContrastFailed(Channel)

Action category: logical

This action will be fired when the contrast is lost in the video signal.

Parameter Function
channel |Channel (Channel.

Video set image brightness

Action name:VideoSetImageBrightness(Channel, SensorType, Brightness)
Action category: logical

Video set image brightness.

channel Channel Channel.
sensor type |SensorType Sensor type.
brightness |Brightness |Brightness.

Video set image contrast

Action name:VideoSetImageContrast(Channel, SensorType, Contrast)
Action category: logical

Video set image contrast.

channel Channel Channel.
sensor type |SensorType Sensor type.
contrast Contrast Contrast.

Video set image saturation

Action name:VideoSetImageSaturation(Channel, SensorType, Saturation)
Action category: logical

Video set image saturation.

channel Channel Channel.
sensor type |SensorType |Sensor type.
saturation |Saturation |Saturation.

Video source has changed

Action name:VideoSourceChanged(Channel, SignalNorm, SignalType, InterlaceType)
Action category: logical

This action indicates the changes on the video input source.

channel Channel Channel.

signal norm |SignalNorm |New signal norm.
signal type SignalType New signal type.
interlace type |InterlaceType [New interlace type.

Video sync detected

Action name:VideoSyncDetected(Channel)

Action category: logical

This action will be fired when the sync is detected in the video signal.

channel |Channel (Channel.

Video sync failed

Action name:VideoSyncFailed(Channel)

Action category: logical

This action will be fired when the sync is lost in the video signal.

channel |Channel (Channel.

Viewer actions

Viewer actions allow remote controlling GSCView. To enable remote controlling GSCView
the "Remote control" setting in GscProfileManager and a global unique viewer client number
has to be configured.

VC alarm queue confirm

Action name:VCAlarmQueueConfirm(Viewer, SelectionMode)

Action category: command

The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

A current alarm is confirmed. The parameter "selection mode" defines which alarm in the
queue will be confirmed.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

selection SelectionMode [first = first active alarm in queue

mode next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue confirm by instance
Action name:VCAlarmQueueConfirmByInstance(Viewer, AlarmiD)

Action category: command
The alarm queue of GSCView with the given viewer client number can be remote controlled.

A current alarm is confirmed. It is identified by its alarm instance ID (event instance ID). A
unique instance ID is assigned to each alarm /recording event at creation time by the GeViS-

Ccope server.

viewer Viewer |Global viewer client number, identifies the GSCView that should be remote
controlled

instance |AlarmID The alarm instance ID (event instance ID)
D

VC alarm queue confirm by type
Action name:VCAlarmQueueConfirmByType(Viewer, TypelD, SelectionMode)

Action category: command
The alarm queue of GSCView with the given viewer client number can be remote controlled.

A current alarm is confirmed. It is identified by its alarm type (event type) which means the
name of the alarm (event) in the GeViScope Setup event list and also by the parameter
"selection mode". The parameter "selection mode" defines which alarm in the queue will be

selected.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

event type |TypelD The alarm type (event type)

selection SelectionMode (first = first active alarm in queue

mode next = next active alarm in queue (from current position)

previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue remove
Action name:VCAlarmQueueRemove(Viewer, SelectionMode)

Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

An alarm is removed from the queue. The parameter "selection mode" defines which alarm
in the queue will be removed.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

selection SelectionMode [first = first active alarm in queue

mode next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue remove by instance
Action name:VCAlarmQueueRemoveBylnstance(Viewer, AlarmiD)

Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

An alarm is removed from the queue. It is identified by its alarm instance ID (event instance
ID). A unique instance ID is assigned to each alarm/event recording.

viewer Viewer |Global viewer client number, identifies the GSCView that should be remote
controlled

instance |AlarmID The alarm instance ID (event instance ID)
D

VC alarm queue remove by type
Action name:VCAIlarmQueueRemoveByType(Viewer, TypelD, SelectionMode)

Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

An alarm is removed from the queue. It is identified by its alarm type (event type) which
means the name of the alarm (event) in the GeViScope Setup event list. The parameter
"selection mode" defines which alarm will be removed.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

event type |TypelD The alarm type (event type)

selection SelectionMode (first = first active alarm in queue

mode next = next active alarm in queue (from current position)

previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue select
Action name:VCAlarmQueueSelect(Viewer, SelectionMode)

Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

An alarm of the queue is presented. The parameter "selection mode" defines which alarm in
the queue will be presented.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

selection SelectionMode [first = first active alarm in queue

mode next = next active alarm in queue (from current position)
previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC alarm queue select by instance
Action name:VCAlarmQueueSelectBylnstance(Viewer, AlarmiD)

Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

An alarm of the queue is presented. It is identified by its alarm instance ID (event instance
ID). A unique instance ID is assigned to each alarm/event recording.

viewer Viewer |Global viewer client number, identifies the GSCView that should be remote
controlled

instance |AlarmID The alarm instance ID (event instance ID)
D

VC alarm queue select by type
Action name:VCAlarmQueueSelectByType(Viewer, TypelD, SelectionMode)

Action category: command
The alarm queue of the GSCView with the given viewer client number can be remote con-

trolled.

An alarm of the queue is presented. It is identified by its alarm type (event type) which
means the name of the alarm (event) in the GeViScope Setup event list and also by the para-
meter "selection mode". The parameter "selection mode" defines which alarm in the queue
will be selected.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

event type |TypelD The alarm type (event type)

selection SelectionMode (first = first active alarm in queue

mode next = next active alarm in queue (from current position)

previous = previous alarm in queue (from current position)
last = last active alarm in queue

VC change scene by name
Action name:VCChangeSceneByName(Viewer, Scene)

Action category: command
The action displays a scene in the GSCView with the given viewer client number.

The scene is identified by its name which is case insensitive. (e.g. "MyScene" equal
"myscene")

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled
scene |Scene |The name of the scene that should be displayed

VC clear scene by name
Action name:VCClearSceneByName(Viewer, Scene)

Action category: command
The action clears a scene in the GSCView with the given viewer client number.
The scene is identified by its name which is case insensitive. If the scene is currently not

active it will be displayed after the action is executed. (e.g. "MyScene" equal "myscene")

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled
scene |Scene |The name of the scene that should be cleared

VC full mode

Action name:VCFullMode(Viewer, FullMode, SensitiveAreaEnabled)

Action category: command
The GscView with the given viewer client number can be switched into full mode display or

normal mode display.
In full mode display GscView offers the possibility to fade in controls like the tool bar or the

side bar if the user moves the mouse cursor in the near of the window borders. This behavior
can be controlled by the Parameter "Sensitive area enabled".

viewer Viewer Global viewer client number, identifies the GscView that
should be remote controlled
full mode FullMode yes = switch to full mode display

no = switch to normal mode display

sensitive area |SensitiveAreaEnabled yes = moving mouse cursor in the near of the window bor-
enabled ders causes controls to fade in
no = no controls fade in

VC set audio level
Action name:VCSetAudiolLevel(Viewer, AudiolLevel)

Action category: command
The volume of the audio output of the GSCView with the given viewer client number can be

controlled.

Global viewer client number, identifies the GSCView that should be remote
controlled

audio AudiolLevel |0 = audio output off
level 100 = audio output in maximum volume

viewer Viewer

VC show viewer text
Action name:VCShowViewerText(Viewer, ShowText)

Action category: command
The text fade-in of all viewers of the GSCView with the given viewer client number can be

switched on and off.

viewer |Viewer Global viewer client number, identifies the GSCView that should be remote

controlled
show ShowText|yes = switch text fade-in on
text no = switch text fade-in off
VC stretch mode

Action name:VCStretchMode(Viewer, StretchMode)

Action category: command
The GSCView with the given viewer client number can be switched into stretched mode dis-

play or normal mode display.

In the stretched view, the viewers are stretched to the available size in the GSCView main
window. In the normal mode display the viewers are sized in 4:3 ratio.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled

stretch StretchMode |yes = switch to stretched mode display
mode no = switch to normal mode display

Viewer change scene

Action name:ViewerChangeScene(Viewer)

Action category: command

The action displays the scene where the viewer with the global number on any GSCView in

the network belongs to.

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled

Viewer clear
Action name:ViewerClear(Viewer)

Action category: command
The action clears the active viewer of the GSCView with the given viewer client number or

the viewer with the global number on any GSCView in the network.

viewer |Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled

or
Global number of a viewer on any GSCView in the network

Viewer clear scene
Action name:ViewerClearScene(Viewer)
Action category: command

The action clears the scene where the active viewer of the GSCView with the given viewer
client number or the viewer with the global number on any GSCView in the network belongs
to.

viewer Viewer|Global viewer client number, identifies the GSCView that should be remote con-
trolled
or
Global number of a viewer on any GSCView in the network

Viewer clear text output

Action name:ViewerClearTextOutput(Viewer)

Action category: command

The action doesn't display a text in the active viewer of the GSCView with the given viewer
client number or the viewer with the global number on any GSCView in the network any-
more.

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled or Global number of a viewer on any GSCView in the network

Viewer connect

Action name:ViewerConnect(Viewer, Channel, PlayMode)

Action category: command

Display pictures of a video channel on the active viewer of the GscView with the given
viewer client number or on the viewer with the global number on some GscView in the net-
work.

The parameter "play mode" defines in which mode the pictures are presented (live, forward,
backward).

viewer |Viewer |Global viewer client number, identifies the GscView that should be remote con-
trolled
or
Global number of a viewer on some GscView in the network

channel|Channel Global number of the media channel

play PlayMode|play stop = if the viewer is already displaying pictures from that channel, it is
mode stopped; if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the actual position; if
not display of pictures with normal speed starts at the beginning of the data-
base
play backward = if the viewer is already displaying pictures from that chan-
nel, it is displaying pictures in normal speed backward from the actual pos-
ition; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" but with high speed
fast backward = like "play backward" but with high speed
step forward = like "play forward" but only one picture
step backward = like "play backward" but only one picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picturein the database
live = display live pictures
next event = like "play forward" but only pictures that belong to event record-
ings
prev event = like "play backward" but only pictures that belong to event
recordings
peek live picture = display only one actual live picture
next detected motion = like "play forward" but only pictures with motion in it

(if no MOS search area is defined in GscView the whole picture size is used for
it) are displayed; the display stops after motion is detected

prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GscView the whole picture size is used
for it) are displayed; the display stops after motion is detected

Viewer connect live
Action name:ViewerConnectLive(Viewer, Channel)

Action category: command
This action displays live pictures of a video channel on the active viewer of the GSCView

with the given viewer client number or on the viewer with the global number on any
GSCView in the network.

viewer |Viewer |Global viewer client number, identifies the GSCView that should be remote con-
trolled
or
Global number of a viewer on any GSCView in the network

channel|Channel|Global number of the media channel

Viewer export picture
Action name:ViewerExportPicture(Viewer, FilePath)

Action category: command
The action exports the current picture of the active viewer of the GSCView with the given

viewer client number or the viewer with the global number on any GSCView in the network.

The actual picture is exported as a windows bitmap graphic file in the GSCView directory or
in the path (local or UNC) defined via the parameter "file path".

viewer |Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled
or
Global number of a viewer on any GSCView in the network

file FilePath | Path (local or UNC) where the picture should be exported to
path

Viewer jump by time
Action name:ViewerJumpByTime(Viewer, Channel, PlayMode, TimelnSec)

Action category: command
The action displays pictures of a video channel on the active viewer of the GSCView with

the given viewer client number or on the viewer with the global number on any GSCView in
the network.

The parameter "play mode" defines in which mode the pictures are presented (live, forward,
backward .).

The parameter "time in sec" defines the time span that the start of the replay should be
moved from the actual timestamp.

viewer |Viewer Global viewer client number, identifies the GSCView that should be remote
controlled

or
Global number of a viewer on any GSCView in the network

channel|Channel |[Global number of the media channel

play PlayMode |play stop = if the viewer is already displaying pictures from that channel, it

mode is stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, itis displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion
in it (if no MOS search area is defined in GSCView the whole picture size is
used for it) are displayed; the display stops after motion is detected

timein |TimelnSec|Time span that the start of the replay should be moved from the actual
sec timestamp

Viewer maximize

Action name:ViewerMaximize(Viewer, Maximize)

Action category: command

The active viewer of the GSCView with the given viewer client number or the viewer with
the global number on any GSCView in the network which should be remote controlled.

The parameter "maximize" defines whether the viewer should be displayed in maximized
mode or not.

viewer Viewer |Global viewer client number, identifies the GSCView that should be remote
controlled
or
Global number of a viewer on any GSCView in the network

maximize|Maximize |yes = display the viewer in maximized mode
no = display the viewer in normal mode

Viewer play from time

Action name:ViewerPlayFromTime(Viewer, Channel, PlayMode, Time)

Action category: command

Display pictures of a video channel on the active viewer of the GscView with the given
viewer client number or on the viewer with the global number on some GscView in the net-
work.

The parameter "play mode" defines in which mode the pictures are presented (live, forward,
backward, .).

The parameter "time" defines the timestamp where the replay of the recorded video should
start.

viewer |Viewer |Global viewer client number, identifies the GscView that should be remote con-
trolled
or
Global number of a viewer on some GscView in the network

channel|Channel Global number of the media channel

play PlayMode|play stop = if the viewer is already displaying pictures from that channel, it is
mode stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
itis displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, it is displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picturein the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

time Time Timestamp where the replay of the recorded video should start. The para-
meter should be defined in the following format:
"2009/02/1307:22:00,594 GMT+01:00"

Viewer print picture

Action name:ViewerPrintPicture(Viewer)

Action category: command

The action prints out the current picture of the active viewer of the GSCView with the given
viewer client number or the viewer with the global number on any GSCView in the network.

The print out is done on the default printer of the PC on which GSCView is running.

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled or Global number of a viewer on any GSCView in the network

Viewer select

Action name:ViewerSelect(Viewer)

Action category: command

The action declares the viewer with the global number on any GSCView in the network to
the active viewer of the corresponding GSCView.

viewer Viewer |Global number of a viewer on any GSCView in the network

Viewer set play mode

Action name:ViewerSetPlayMode(Viewer, PlayMode, PlaySpeed)

Action category: command

The action sets the "play mode" of the active viewer of the GSCView with the given viewer
client number or the viewer with the global number on any GSCView in the network.

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled
or
Global number of a viewer on any GSCView in the network

play |PlayMode |play stop = if the viewer is already displaying pictures from that channel, itis

mode stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel, it
is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, itis displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picturein the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used for
it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

play | PlaySpeed|Speed rate for fast forward/backward (2.)
speed

Viewer show alarm by instance

Action name:ViewerShowAlarmBylnstance(Viewer, AlarmID, PlayMode)

Action category: command

The action displays pictures of an alarm on the GSCView with the given viewer client num-

ber in the network.

The alarm is identified by its alarm instance ID (event instance ID). Every alarm (event) is
assigned a unique instance ID at creation time by the GeViScope server.

The parameter "play mode" defines in which mode the pictures are presented (live replay,
replay event pictures, .).

viewer |Viewer |Global viewer client number, identifies the GSCView that should be remote
controlled

instance|AlarmID |The alarm instance ID (event instance ID)

1D
play PlayMode|Show alarm using default settings = display alarm pictures using the default
mode settings defined in the GeViScope setup
Live replay = display live pictures of the cameras belonging to the alarm con-
figuration

replay event pictures = replay the pictures belonging to the alarm (only once)

continuous event replay = replay the pictures belonging to the alarm
continuously in a loop

show first alarm picture only = only display the first picture belonging to the
alarm

Viewer show alarm by key

Action name:ViewerShowAlarmByKey(Viewer, ForeignKey, PlayMode)

Action category: command

The action displays pictures of an alarm on the GSCView with the given viewer client num-
ber in the network.

The alarm is identified by its "foreign key". The "foreign key" was assigned explicit to the
alarm as the alarm was started.

The parameter "play mode" defines in which mode the pictures are presented (live replay,
replay event pictures .).

viewer Viewer Global viewer client number, identifies the GSCView that should be remote
controlled

foreign ForeignKey|The foreign key that was assigned to the alarm as the alarm was started
key

play PlayMode |play stop = if the viewer is already displaying pictures from that channel, it

mode is stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
it is displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, itis displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

Viewer show alarm by type

Action name:ViewerShowAlarmByType(Viewer, TypelD, ForeignKey, PlayMode)

Action category: command

The action displays pictures of an alarm on the GSCView with the given viewer client num-
ber in the network.

The alarm is identified by its alarm type and optional by its foreign key. The alarm type
(event name) is defined in the GeViScope setup. The foreign key was assigned explicit to
the alarm as the alarm was started. It is optional. If it is not set, the last alarm with the
defined alarm type is displayed.

The parameter "play mode" defines in which mode the pictures are presented (live replay,
replay event pictures .).

viewer Viewer Global viewer client number, identifies the GSCView that should be remote
controlled

alarm |TypelD Type (event name) of the alarm, defined in the GeViScope setup

type

foreign | ForeignKey The foreign key that was assigned to the alarm as the alarm was started
key

play PlayMode |play stop = if the viewer is already displaying pictures from that channel, it

mode is stopped? if not the newest picture in the database is displayed
play forward = if the viewer is already displaying pictures from that channel,
itis displaying pictures in normal speed forward from the current position; if
not display of pictures with normal speed starts at the beginning of the data-
base play backward = if the viewer is already displaying pictures from that
channel, itis displaying pictures in normal speed backward from the actual
position; if not display of pictures with normal speed starts at the end of the
database
fast forward = like "play forward" high speed
fast backward = like "play backward" high speed
step forward = like "play forward" picture by picture
step backward = like "play backward" picture by picture
play BOD = display the first (the oldest) picture in the database
play EOD = display the last (the newest) picture in the database
live = display live pictures
next event = jump to the next event recording
prev event = jump to the previous event recording
peek live picture = displays only one current live picture
next detected motion = like "play forward" but only pictures with motion in it
(if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected
prev detected motion = like "play backward" but only pictures with motion in
it (if no MOS search area is defined in GSCView the whole picture size is used
for it) are displayed; the display stops after motion is detected

Viewer change sync audio/video

Action name:ViewerSyncAudioAndVideo(Viewer, EnableSync)

Action category: command

The active viewer of the GSCView with the given viewer client number or the viewer with
the global number on any GSCView in the network should be remote controlled.

The parameter "enable sync" defines whether audio and video should be synchronized or
not.

viewer Viewer Global viewer client number, identifies the GSCView that should be
remote controlled
or
Global number of a viewer on any GSCView in the network

enable EnableSync lyes = synchronize audio and video
sync no = don't synchronize audio and video

Viewer text output

Action name:ViewerTextOutput(Viewer, Text)

Action category: command

The action displays a text in the active viewer of the GSCView with the given viewer client
number or the viewer with the global number on any GSCView in the network.

viewer Viewer Global viewer client number, identifies the GSCView that should be remote con-
trolled
or
Global number of a viewer on any GSCView in the network

text Text |Textthat should be displayed in the picture
string

Viewer notification actions

Viewer notifications are fired by GSCView while GSCView is remote controlled. To enable
remote controlling GSCView the "Remote control" setting in GscProfileManager and a
global unique viewer client number has to be configured. To enable GSCView sending
viewer notifications the "Send notification actions" settings in GscProfileManager have to
be configured.

Image export notification

Action name:ImageExportNotification(User, Destination, DestinationType, TimeStamp,
TimeEnd, Channels, ClientHost, ClientType, ClientAccount)

Action category: notification

A single image or a video sequence has been exported by a GSCView in the network.

GSCView has fired this notification because a single picture has been exported via a View-
erExportPicture action while GSCView is remote controlled or because the user has manu-
ally exported a picture or a video sequence in GSCView.

user User GeViScope user, who
has done the export
destination Destination Path (local or UNC)

where the picture or
sequence was exported

destination type |DestinationType |0 = single image
1 = backup file (GBF)
2 = video file (MPEG,
Video DVD, MPEG4CCTV
raw)
3 = snapshot to clip-

time stamp

end time

channels

client host

client type

client account

TimeStamp

TimeEnd

Channels

ClientHost

ClientType

ClientAccount

board

4 = print picture
Timestamp belonging to
the picture exported or
belonging to the first pic-
ture of the exported
video sequence. The
parameter is transmitted
in the following format:
"2009/05/06
14:47:48,359
GMT+02:00"

Timestamp belonging to
the last picture of the
exported video
sequence. The para-
meter is transmitted in
the following format:
"2009/05/06
14:47:48,359
GMT+02:00"

List of video channels
that are included in the
export result

Host name of the PC
where GSCView is run-
ning

1 = GSCView

All other values are for
future usel!

Windows user account
under that GSCView is
running

Scene store modification

Action name:SceneStoreModification(Viewer, SceneStorelD, SceneStoreName,
TimeStamp, ModificationType, User, ClientHost, ClientType, ClientAccount)
Action category: notification

Scene store modification.

viewer

scene store
GUID

scene store
name

time stamp
modification
type

user

client host
client type

client account

Viewer
SceneStorelD

Global number of a viewer on some GSCView in the network
Scene store GUID.

SceneStoreNam- Scene store name.

e
TimeStamp
Modi-
ficationType
User
ClientHost
ClientType

ClientAccount

Time stamp.
Modification type.

Name of the user.
Host name of the PC where GSCView is running

1 = GSCView
All other values are for future use!

Windows user account under that GSCView is running

VC alarm queue notification

Action name:VCAlarmQueueNotification(Viewer, Notification, AlarmID, TypelD, Cli-

entHost, ClientType, ClientAccount)

Action category: notification
The state of the alarm queue of the GSCView with the transmitted viewer client number has
been changed.

GSCView has fired this notification because the state of its alarm queue has been changed
via a VCAlarmQueue... action while GSCView is remote controlled or because the user has

manually changed the state of the alarm queue in GSCView.

An alarm can be identified by its alarm instance ID (event instance ID). Every alarm (event)
is assigned a unique instance ID at creation time by the GeViScope server.

Alternatively the alarm can be identified by its alarm type (event type) which means the

name of the alarm (event) in the GeViScope Setup event list.

viewer

notification

instance ID

event type

client host

client type

Viewer

Notification

AlarmID

TypelD

ClientHost

ClientType

Global viewer client num-
ber, identifies the
GSCView that fired this
notification

New alarm = an new
alarm occurred

Presented = an alarm was
presented

Stacked = an alarm was
stacked in the queue,
because the queue is
blocked by an active alarm

Confirmed = an alarm was
confirmed

Removed = an alarm was
removed from the queue
Last confirmed = the last
alarm in the queue was
confirmed

Last removed = the last
alarm was removed from
the queue

List confirmed = there are
no more unconfirmed
alarms in the queue

List empty = there are no
more alarms in the queue

The alarm instance ID
(event instance ID)

The alarm type (event
type)

Host name of the PC
where GSCView is run-
ning

1 = GSCView

All other values are for
future usel!

client account ClientAccount Windows user account
under that GSCView is run-
ning

VC scene changed

Action name:VCSceneChanged(Viewer, Scene)

Action category: notification

The active scene of the GSCView with the transmitted viewer client number has been

changed.

GSCView has fired this notification because its active scene has been changed via a
VCChangeSceneByName or ViewerChangeScene action while GSCView is remote con-
trolled or because the user has manually changed the active scene in GSCView.

viewer Viewer Global viewer client number, identifies the GSCView that fired
this notification

scene Scene The name of the scene that is displayed after the change

Viewer cleared

Action name:ViewerCleared(Viewer, ClientHost, ClientType, ClientAccount)

Action category: notification
The viewer with the transmitted global number on some GSCView in the network has been

cleared.

GSCView has fired this notification because one of its viewers has been cleared via a View-
erClear action while GSCView is remote controlled or because the user has manually
cleared the viewer in GSCView.

viewer Viewer Global number of a viewer on some GSCView in the network
client host ClientHost Host name of the PC where GSCView is running
client type ClientType 1 = GSCView

All other values are for future use!
clientaccount | ClientAccount Windows user account under that GSCView is running

Viewer connected
Action name:ViewerConnected(Viewer, Channel, PlayMode, ClientHost, ClientType, Cli-

entAccount)
Action category: notification
The viewer with the transmitted global number on some GSCView in the network has been

connected.

GSCView has fired this notification because one of its viewers has been connected via a
ViewerConnect or ViewerConnectLive action while GSCView is remote controlled or
because the user has manually connected the viewer in GSCView.

The parameter "play mode" defines in which mode the pictures are presented (live, forward,
backward, .).

viewer

channel

play mode

Viewer

Channel

PlayMode

Global number of a
viewer on some
GSCView in the network

Global number of the
media channel

play stop = if the viewer
is already displaying pic-
tures from that channel,
it is stopped; if not the
newest picture in the
database is displayed
play forward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed forward from
the actual position; if
not display of pictures
with normal speed
starts at the beginning
of the database

play backward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed backward
from the actual position;
if not display of pictures
with normal speed
starts at the end of the
database

fast forward = like "play
forward" but with high
speed

fast backward = like
"play backward" but
with high speed

step forward = like
"play forward" but only
one picture

step backward = like
"play backward" but
only one picture

play BOD = display the
first (the oldest) picture
in the database

play EOD = display the
last (the newest) pic-
turein the database
live = display live pic-
tures

next event = like "play
forward" but only pic-
tures that belong to
event recordings

prev event = like "play

backward" but only pic-
tures that belong to
event recordings

peek live picture = dis-
play only one actual live
picture

next detected motion =
like "play forward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

prev detected motion =
like "play backward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future usel!

client account ClientAccount Windows user account
under that GSCView is
running

Viewer play mode changed

Action name:ViewerPlayModeChanged(Viewer, Channel, PlayMode, ChannelTime, Cli-
entHost, ClientType, ClientAccount)

Action category: notification

The playmode of the viewer with the transmitted global number on some GSCView in the
network has been changed.

GSCView has fired this notification because the playmode of one of its viewers has been
changed via a ViewerConnect, ViewerConnectLive, ViewerSetPlayMode, View-
erPlayFromTime, ViewerJumpByTime or one of the ViewerShowAlarmBy. actions while
GSCView is remote controlled or because the user has manually changed the playmode of
the viewer in GSCView.

viewer Viewer Global number of a
viewer on some
GSCView in the network

channel Channel Global number of the
media channel, dis-
played in the viewer

play mode

PlayMode

play stop = if the viewer
is already displaying pic-
tures from that channel,
it is stopped; if not the
newest picture in the
database is displayed
play forward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed forward from
the actual position; if
not display of pictures
with normal speed
starts at the beginning
of the database

play backward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed backward
from the actual position;
if not display of pictures
with normal speed
starts at the end of the
database

fast forward = like "play
forward" but with high
speed

fast backward = like
"play backward" but
with high speed

step forward = like
"play forward" but only
one picture

step backward = like
"play backward" but
only one picture

play BOD = display the
first (the oldest) picture
in the database

play EOD = display the
last (the newest) pic-
ture in the database
live = display live pic-
tures

next event = like "play
forward" but only pic-
tures that belong to
event recordings

prev event = like "play
backward" but only pic-
tures that belong to
event recordings

peek live picture = dis-
play only one actual live
picture

next detected motion =
like "play forward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

prev detected motion =
like "play backward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

channel time ChannelTime Timestamp belonging to
the picture presented in
the viewer directly after
the plamode had
changed. The para-
meter is transmitted in
the following format:
"2009/05/06
14:47:48,359
GMT+02:00"

client host ClientHost Host name of the PC
where GSCView is run-
ning

client type ClientType 1 = GSCView
All other values are for
future usel!

client account ClientAccount Windows user account
under that GSCView is
running

Viewer selection changed

Action name:ViewerSelectionChanged(Viewer, Channel, PlayMode, ClientHost, Cli-
entType, ClientAccount)

Action category: notification

The active viewer on some GSCView in the network has been changed.
GSCView has fired this notification because the user has selected one of its viewers by
mouse click or by dragging a camera onto one of its viewers.

GSCView only fires the notification, if a camera is displayed on the selected viewer.

viewer Viewer Global number of a
viewer on some
GSCView in the network

channel Channel Global number of the
media channel, dis-
played in the viewer

play mode

PlayMode

play stop = if the viewer
is already displaying pic-
tures from that channel,
it is stopped; if not the
newest picture in the
database is displayed
play forward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed forward from
the actual position; if
not display of pictures
with normal speed
starts at the beginning
of the database

play backward = if the
viewer is already dis-
playing pictures from
that channel, it is dis-
playing pictures in nor-
mal speed backward
from the actual position;
if not display of pictures
with normal speed
starts at the end of the
database

fast forward = like "play
forward" but with high
speed

fast backward = like
"play backward" but
with high speed

step forward = like
"play forward" but only
one picture

step backward = like
"play backward" but
only one picture

play BOD = display the
first (the oldest) picture
in the database

play EOD = display the
last (the newest) pic-
ture in the database
live = display live pic-
tures

next event = like "play
forward" but only pic-
tures that belong to
event recordings

prev event = like "play
backward" but only pic-
tures that belong to
event recordings

peek live picture = dis-
play only one actual live
picture

client host

client type

client account

ClientHost

ClientType

ClientAccount

next detected motion =
like "play forward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

prev detected motion =
like "play backward" but
only pictures with
motion in it (if no MOS
search area is defined in
GscView the whole pic-
ture size is used for it)
are displayed; the dis-
play stops after motion
is detected

Host name of the PC
where GSCView is run-
ning

1 = GSCView

All other values are for
future use!

Windows user account
under that GSCView is
running

	GeViScope SDK
	GeViScope Software Development Kit (SDK)
	Introduction
	Contents
	Files and directory structure of the SDK
	Setting up a virtual test environment
	Introduction
	Step by step
	Background information

	Overview of the interfaces in the SDK
	Introduction
	Building blocks of functionality

	Remote control GSCView by actions
	Introduction
	Step by step
	Background information

	Supported development platforms
	Guidelines and hints
	Introduction
	General hints
	Working with handles and instances
	Interaction between DBI and MediaPlayer
	Enumeration of setup data
	PLC, actions and events
	Media channel IDs
	Handling connection collapses
	Using MediaPlayer with GeViScope and MULTISCOPE III servers

	Using the SDK with .NET
	Deploying a custom solution based on the .NET wrapper
	GeViScope REGISTRY
	Using the GscRegistry with .NET

	GSCView data filter plugins
	Introduction
	General hints
	The customized data filter DLL interface
	Creating the filter criteria

	Examples overview
	Examples grouped by programming tasks
	Examples grouped by development platforms

	Action documentation
	ATM / ACS
	ACS access denied
	ACS access granted
	ACS raw answer
	ACS raw data
	ATM raw answer
	ATM raw data
	ATM transaction

	Audio control
	ABC connect
	ABC disconnect
	ABC play file
	Sensor audio alarm

	Backup actions
	Abort all auto backups
	Abort auto backup
	Auto backup capacity warning
	Auto backup capacity file auto deleted
	Auto backup capacity out of disk space
	Auto backup file done
	Auto backup file progress
	Auto backup file started
	Auto backup operation done
	Auto backup operation started
	Auto backup schedule done
	Auto backup schedule started
	Backup event
	Event backup done
	Event backup file done
	Event backup file progress
	Event backup file started
	Event backup started
	Start auto backup

	Camera control
	Auto focus off
	Auto focus on
	Camera backlight compensation mode
	Camera clear preset text
	Camera day/night mode
	Camera light off
	Camera light on
	Camera manual iris off
	Camera manual iris on
	Camera off
	Camera on
	Camera pump off
	Camera pump on
	Camera RAW output
	Camera select char mode
	Camera set preset text
	Camera spec func U off
	Camera spec func U on
	Camera spec func V off
	Camera spec func V on
	Camera spec func X off
	Camera spec func X on
	Camera spec func Y off
	Camera spec func Y on
	Camera stop all
	Camera text off
	Camera text on
	Camera tour start
	Camera tour stop
	Camera version off
	Camera version on
	Camera wash-wipe off
	Camera wash-wipe on
	Move to default position
	Clear default position
	Clear preset position
	Save default position
	Fast speed off
	Fast speed on
	Focus far
	Focus near
	Focus stop
	Iris close
	Iris open
	Iris stop
	Move to absolute position
	Move to by speed
	Move to relative position
	Pan auto
	Pan left
	Pan right
	Pan stop
	Move to preset position
	Clear preset position
	Save preset position
	Set camera text
	Tilt down
	Tilt stop
	Tilt up
	Zoom in
	Zoom out
	Zoom stop

	Cash management actions
	Safebag close
	Safebag data
	Safebag open
	Safebag passing of risk data
	Safebag passing of risk start
	Safebag passing of risk stop

	Device information
	Device found
	New firmware received
	Device plugin error
	Device plugin state
	Device reattached
	Device removed

	Digital contacts
	Digital input
	IOI43 reset mainboard
	IOI43 temperature notification
	IOI43 watchdog activate
	IOI43 watchdog deactivate
	IOI43 watchdog trigger
	Key pressed
	Key released
	Set digital output
	Set system LED
	Set system LED to blink

	Lenel
	Lenel access event
	Lenel fire event
	Lenel intercom event
	Lenel raw data
	Lenel refresh names
	Lenel security event
	Lenel video event

	Logistic
	Log barcode data
	Log barcode data LPS
	Log NPR recognition

	LPS Actions
	LPS position data
	LPS query position

	POS
	Barcode data
	Filling pump status
	Interface raw answer
	Interface raw data
	POS data
	POS status
	Terminal article data
	Terminal payment data

	Remote export
	Cancel export
	Export finished
	Export progress
	Initialize remote export
	Set export marker
	Start remote export
	Start scene store

	SKIDATA
	SKIDATA control
	SKIDATA device event
	SKIDATA entry
	SKIDATA exit
	SKIDATA transaction

	System actions
	Custom action
	Database recording info per ring
	Database recording info total
	Database started
	Event recording changed
	Event started
	Event stopped
	FRC notification
	GEMOS alarm
	Kill all events
	Kill event
	Kill event by instance
	Live check
	Set clock
	Setup changed
	Setup upload progress
	Set watchdog
	SMRP viewer cleared
	SMRP viewer connected
	SMTP mail
	Start event
	Stop all events
	Stop event
	Stop event by instance
	System error
	System info
	System settings changed
	System started
	System terminating
	System warning
	Transfer binary buffer
	Transfer binary channel buffer
	User login
	User login failed
	User logout

	Video control actions
	Activate external process
	Change AD parameter set
	Change camera profile
	Change CPA parameter set
	Change OBTRACK parameter set
	Change VMD parameter set
	Channel error
	Channel info
	Channel live check
	Channel warning
	CPA measurement
	IAS settings changed
	IP camera raw command
	Make CPA reference image
	Media channel setup
	NPR raw data
	NPR recognition
	OBTRACK channel counter
	OBTRACK channel counter threshold
	OBTRACK channel set counter
	OBTRACK frame raw data
	OBTRACK group counter
	OBTRACK group counter threshold
	OBTRACK group set counter
	OBTRACK object raw data
	OBTRACK tunnel alarm
	Sensor alarm finished
	Sensor inhibit alarm finished
	Sensor inhibit video alarm
	Sensor video alarm
	Set system time
	Set test picture mode
	Video contrast detected
	Video contrast failed
	Video set image brightness
	Video set image contrast
	Video set image saturation
	Video source has changed
	Video sync detected
	Video sync failed

	Viewer actions
	VC alarm queue confirm
	VC alarm queue confirm by instance
	VC alarm queue confirm by type
	VC alarm queue remove
	VC alarm queue remove by instance
	VC alarm queue remove by type
	VC alarm queue select
	VC alarm queue select by instance
	VC alarm queue select by type
	VC change scene by name
	VC clear scene by name
	VC full mode
	VC set audio level
	VC show viewer text
	VC stretch mode
	Viewer change scene
	Viewer clear
	Viewer clear scene
	Viewer clear text output
	Viewer connect
	Viewer connect live
	Viewer export picture
	Viewer jump by time
	Viewer maximize
	Viewer play from time
	Viewer print picture
	Viewer select
	Viewer set play mode
	Viewer show alarm by instance
	Viewer show alarm by key
	Viewer show alarm by type
	Viewer change sync audio/video
	Viewer text output

	Viewer notification actions
	Image export notification
	Scene store modification
	VC alarm queue notification
	VC scene changed
	Viewer cleared
	Viewer connected
	Viewer play mode changed
	Viewer selection changed

